6.
Duan L, Liu X, Zhang J
. Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy. J Am Chem Soc. 2016; 138(17):5722-8.
DOI: 10.1021/jacs.6b02682.
View
7.
Warner T, Mitchell J
. Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic. FASEB J. 2004; 18(7):790-804.
DOI: 10.1096/fj.03-0645rev.
View
8.
Budniak U, Karolak N, Kulik M, Mlynarczyk K, Gorna M, Dominiak P
. The Role of Electrostatic Interactions in IFIT5-RNA Complexes Predicted by the UBDB+EPMM Method. J Phys Chem B. 2022; 126(45):9152-9167.
PMC: 9677429.
DOI: 10.1021/acs.jpcb.2c04519.
View
9.
Williams C, Headd J, Moriarty N, Prisant M, Videau L, Deis L
. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2017; 27(1):293-315.
PMC: 5734394.
DOI: 10.1002/pro.3330.
View
10.
Copeland R, Pompliano D, Meek T
. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov. 2006; 5(9):730-9.
DOI: 10.1038/nrd2082.
View
11.
Cryer B, Feldman M
. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. Am J Med. 1998; 104(5):413-21.
DOI: 10.1016/s0002-9343(98)00091-6.
View
12.
Allen F, Bruno I
. Bond lengths in organic and metal-organic compounds revisited: X-H bond lengths from neutron diffraction data. Acta Crystallogr B. 2010; 66(Pt 3):380-6.
DOI: 10.1107/S0108768110012048.
View
13.
Takaba K, Tai Y, Eki H, Dao H, Hanazono Y, Hasegawa K
. Subatomic resolution X-ray structures of green fluorescent protein. IUCrJ. 2019; 6(Pt 3):387-400.
PMC: 6503917.
DOI: 10.1107/S205225251900246X.
View
14.
Krzyzak E, Szkatula D, Wiatrak B, Gebarowski T, Marciniak A
. Synthesis, Cyclooxygenases Inhibition Activities and Interactions with BSA of -substituted 1-pyrrolo[3,4-c]pyridine-1,3()-diones Derivatives. Molecules. 2020; 25(12).
PMC: 7355801.
DOI: 10.3390/molecules25122934.
View
15.
Vecchio A, Simmons D, Malkowski M
. Structural basis of fatty acid substrate binding to cyclooxygenase-2. J Biol Chem. 2010; 285(29):22152-63.
PMC: 2903402.
DOI: 10.1074/jbc.M110.119867.
View
16.
Hermanson D, Gamble-George J, Marnett L, Patel S
. Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. Trends Pharmacol Sci. 2014; 35(7):358-67.
PMC: 4074568.
DOI: 10.1016/j.tips.2014.04.006.
View
17.
Kurumbail R, Stevens A, Gierse J, McDonald J, Stegeman R, Pak J
. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996; 384(6610):644-8.
DOI: 10.1038/384644a0.
View
18.
Bitencourt-Ferreira G, de Azevedo Junior W
. Electrostatic Potential Energy in Protein-Drug Complexes. Curr Med Chem. 2021; 28(24):4954-4971.
DOI: 10.2174/0929867328666210201150842.
View
19.
Tielemans M, van Rossum L, Eikendal T, Focks J, Laheij R, J B M J Jansen
. Gastrointestinal symptoms in NSAID users in an 'average risk population': results of a large population-based study in randomly selected Dutch inhabitants. Int J Clin Pract. 2014; 68(4):512-9.
DOI: 10.1111/ijcp.12346.
View
20.
Luong C, Miller A, Barnett J, Chow J, Ramesha C, Browner M
. Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat Struct Biol. 1996; 3(11):927-33.
DOI: 10.1038/nsb1196-927.
View