6.
Metzger-Filho O, Sun Z, Viale G, Price K, Crivellari D, Snyder R
. Patterns of Recurrence and outcome according to breast cancer subtypes in lymph node-negative disease: results from international breast cancer study group trials VIII and IX. J Clin Oncol. 2013; 31(25):3083-90.
PMC: 3753700.
DOI: 10.1200/JCO.2012.46.1574.
View
7.
Ye L, Suo H, Liang C, Zhang L, Jin Z, Yu C
. Nomogram for predicting the risk of bone metastasis in breast cancer: a SEER population-based study. Transl Cancer Res. 2022; 9(11):6710-6719.
PMC: 8798558.
DOI: 10.21037/tcr-20-2379.
View
8.
Chimienti M, Kato A, Hicks O, Angelier F, Beaulieu M, Ouled-Cheikh J
. The role of individual variability on the predictive performance of machine learning applied to large bio-logging datasets. Sci Rep. 2022; 12(1):19737.
PMC: 9672113.
DOI: 10.1038/s41598-022-22258-1.
View
8.
Zhao Y, Li L, Han K, Li T, Duan J, Sun Q
. A radio-pathologic integrated model for prediction of lymph node metastasis stage in patients with gastric cancer. Abdom Radiol (NY). 2023; 48(11):3332-3342.
DOI: 10.1007/s00261-023-04037-2.
View
9.
Schlichting J, Soliman A, Schairer C, Harford J, Hablas A, Ramadan M
. Breast cancer by age at diagnosis in the Gharbiah, Egypt, population-based registry compared to the United States Surveillance, Epidemiology, and End Results Program, 2004-2008. Biomed Res Int. 2015; 2015:381574.
PMC: 4606134.
DOI: 10.1155/2015/381574.
View
10.
Courtney D, Davey M, Moloney B, Barry M, Sweeney K, McLaughlin R
. Breast cancer recurrence: factors impacting occurrence and survival. Ir J Med Sci. 2022; 191(6):2501-2510.
PMC: 9671998.
DOI: 10.1007/s11845-022-02926-x.
View
11.
Hicks S, Strumke I, Thambawita V, Hammou M, Riegler M, Halvorsen P
. On evaluation metrics for medical applications of artificial intelligence. Sci Rep. 2022; 12(1):5979.
PMC: 8993826.
DOI: 10.1038/s41598-022-09954-8.
View
12.
Zeng L, Liu L, Chen D, Lu H, Xue Y, Bi H
. The innovative model based on artificial intelligence algorithms to predict recurrence risk of patients with postoperative breast cancer. Front Oncol. 2023; 13:1117420.
PMC: 10029918.
DOI: 10.3389/fonc.2023.1117420.
View
13.
Clift A, Dodwell D, Lord S, Petrou S, Brady M, Collins G
. Development and internal-external validation of statistical and machine learning models for breast cancer prognostication: cohort study. BMJ. 2023; 381:e073800.
PMC: 10170264.
DOI: 10.1136/bmj-2022-073800.
View
14.
Weber J, Jochelson M, Eaton A, Zabor E, Barrio A, Gemignani M
. MRI and Prediction of Pathologic Complete Response in the Breast and Axilla after Neoadjuvant Chemotherapy for Breast Cancer. J Am Coll Surg. 2017; 225(6):740-746.
PMC: 5705460.
DOI: 10.1016/j.jamcollsurg.2017.08.027.
View
15.
Zhao Y, Liu G, Sun Q, Zhai G, Wu G, Li Z
. Validation of CT radiomics for prediction of distant metastasis after surgical resection in patients with clear cell renal cell carcinoma: exploring the underlying signaling pathways. Eur Radiol. 2021; 31(7):5032-5040.
DOI: 10.1007/s00330-020-07590-2.
View
16.
Zuo D, Yang L, Jin Y, Qi H, Liu Y, Ren L
. Machine learning-based models for the prediction of breast cancer recurrence risk. BMC Med Inform Decis Mak. 2023; 23(1):276.
PMC: 10688055.
DOI: 10.1186/s12911-023-02377-z.
View
17.
Sun Q, Lin X, Zhao Y, Li L, Yan K, Liang D
. Deep Learning vs. Radiomics for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using Ultrasound Images: Don't Forget the Peritumoral Region. Front Oncol. 2020; 10:53.
PMC: 7006026.
DOI: 10.3389/fonc.2020.00053.
View
18.
Shiner A, Kiss A, Saednia K, Jerzak K, Gandhi S, Lu F
. Predicting Patterns of Distant Metastasis in Breast Cancer Patients following Local Regional Therapy Using Machine Learning. Genes (Basel). 2023; 14(9).
PMC: 10531341.
DOI: 10.3390/genes14091768.
View
19.
Zhang S, Song M, Zhao Y, Xu S, Sun Q, Zhai G
. Radiomics nomogram for preoperative prediction of progression-free survival using diffusion-weighted imaging in patients with muscle-invasive bladder cancer. Eur J Radiol. 2020; 131:109219.
DOI: 10.1016/j.ejrad.2020.109219.
View