6.
Moonmangmee D, Adachi O, Ano Y, Shinagawa E, Toyama H, Theeragool G
. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Biosci Biotechnol Biochem. 2001; 64(11):2306-15.
DOI: 10.1271/bbb.64.2306.
View
7.
Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N
. 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in gluconobacter species. Appl Environ Microbiol. 2003; 69(4):1959-66.
PMC: 154820.
DOI: 10.1128/AEM.69.4.1959-1966.2003.
View
8.
Kataoka N, Matsutani M, Yakushi T, Matsushita K
. Efficient Production of 2,5-Diketo-d-Gluconate via Heterologous Expression of 2-Ketogluconate Dehydrogenase in Gluconobacter japonicus. Appl Environ Microbiol. 2015; 81(10):3552-60.
PMC: 4407217.
DOI: 10.1128/AEM.04176-14.
View
9.
Edgar R
. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32(5):1792-7.
PMC: 390337.
DOI: 10.1093/nar/gkh340.
View
10.
Truesdell S, Sims J, Boerman P, Seymour J, Lazarus R
. Pathways for metabolism of ketoaldonic acids in an Erwinia sp. J Bacteriol. 1991; 173(21):6651-6.
PMC: 209011.
DOI: 10.1128/jb.173.21.6651-6656.1991.
View
11.
Yakushi T, Terada Y, Ozaki S, Kataoka N, Akakabe Y, Adachi O
. Aldopentoses as new substrates for the membrane-bound, pyrroloquinoline quinone-dependent glycerol (polyol) dehydrogenase of Gluconobacter sp. Appl Microbiol Biotechnol. 2018; 102(7):3159-3171.
DOI: 10.1007/s00253-018-8848-1.
View
12.
Li K, Mao X, Liu L, Lin J, Sun M, Wei D
. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans. Microb Cell Fact. 2016; 15(1):121.
PMC: 4939059.
DOI: 10.1186/s12934-016-0521-8.
View
13.
Swanson B, Hager P, Phibbs Jr P, Ochsner U, Vasil M, Hamood A
. Characterization of the 2-ketogluconate utilization operon in Pseudomonas aeruginosa PAO1. Mol Microbiol. 2000; 37(3):561-73.
DOI: 10.1046/j.1365-2958.2000.02012.x.
View
14.
Richhardt J, Bringer S, Bott M
. Role of the pentose phosphate pathway and the Entner-Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H. Appl Microbiol Biotechnol. 2013; 97(10):4315-23.
DOI: 10.1007/s00253-013-4707-2.
View
15.
Figurski D, Helinski D
. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979; 76(4):1648-52.
PMC: 383447.
DOI: 10.1073/pnas.76.4.1648.
View
16.
Sun L, Wang D, Sun W, He X, Cui F, Zhang X
. A 2-ketogluconate kinase KguK in Pseudomonas plecoglossicida JUIM01: Enzymatic characterization and its role in 2-keto-d-gluconic acid metabolism. Int J Biol Macromol. 2020; 165(Pt B):2640-2648.
DOI: 10.1016/j.ijbiomac.2020.10.169.
View
17.
Matsushita K, Toyama H, Adachi O
. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol. 1994; 36:247-301.
DOI: 10.1016/s0065-2911(08)60181-2.
View
18.
van der Werf M, Overkamp K, Muilwijk B, Koek M, van der Werff-van der Vat B, Jellema R
. Comprehensive analysis of the metabolome of Pseudomonas putida S12 grown on different carbon sources. Mol Biosyst. 2008; 4(4):315-27.
DOI: 10.1039/b717340g.
View
19.
Saichana I, Moonmangmee D, Adachi O, Matsushita K, Toyama H
. Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and disruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase. Appl Environ Microbiol. 2009; 75(13):4240-7.
PMC: 2704797.
DOI: 10.1128/AEM.00640-09.
View
20.
Saichana I, Ano Y, Adachi O, Matsushita K, Toyama H
. Preparation of enzymes required for enzymatic quantification of 5-keto-D-gluconate and 2-keto-D-gluconate. Biosci Biotechnol Biochem. 2007; 71(10):2478-86.
DOI: 10.1271/bbb.70259.
View