6.
Swidergall M, Khalaji M, Solis N, Moyes D, Drummond R, Hube B
. Candidalysin Is Required for Neutrophil Recruitment and Virulence During Systemic Candida albicans Infection. J Infect Dis. 2019; 220(9):1477-1488.
PMC: 6761979.
DOI: 10.1093/infdis/jiz322.
View
7.
Smolarz M, Zawrotniak M, Satala D, Rapala-Kozik M
. Extracellular Nucleic Acids Present in the Biofilm Trigger the Release of Neutrophil Extracellular Traps. Front Cell Infect Microbiol. 2021; 11:681030.
PMC: 8187917.
DOI: 10.3389/fcimb.2021.681030.
View
8.
Mogavero S, Hofs S, Lauer A, Muller R, Brunke S, Allert S
. Candidalysin Is the Hemolytic Factor of . Toxins (Basel). 2022; 14(12).
PMC: 9785678.
DOI: 10.3390/toxins14120874.
View
9.
Zawrotniak M, Juszczak M, Rapala-Kozik M
. Release of neutrophil extracellular traps in response to Candida albicans yeast, as a secondary defense mechanism activated by phagocytosis. Yeast. 2023; 40(8):349-359.
DOI: 10.1002/yea.3842.
View
10.
Gil-Bona A, Llama-Palacios A, Parra C, Vivanco F, Nombela C, Monteoliva L
. Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans. J Proteome Res. 2014; 14(1):142-53.
DOI: 10.1021/pr5007944.
View
11.
Liebana-Jordan M, Brotons B, Falcon-Perez J, Gonzalez E
. Extracellular Vesicles in the Fungi Kingdom. Int J Mol Sci. 2021; 22(13).
PMC: 8269022.
DOI: 10.3390/ijms22137221.
View
12.
Honorato L, Bonilla J, Valdez A, Frases S, Sousa Araujo G, Sabino A
. Toll-like receptor 4 (TLR4) is the major pattern recognition receptor triggering the protective effect of a extracellular vesicle-based vaccine prototype in murine systemic candidiasis. mSphere. 2024; 9(8):e0046724.
PMC: 11351041.
DOI: 10.1128/msphere.00467-24.
View
13.
Moyes D, Wilson D, Richardson J, Mogavero S, Tang S, Wernecke J
. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016; 532(7597):64-8.
PMC: 4851236.
DOI: 10.1038/nature17625.
View
14.
Zawrotniak M, Bochenska O, Karkowska-Kuleta J, Seweryn-Ozog K, Aoki W, Ueda M
. Aspartic Proteases and Major Cell Wall Components in Trigger the Release of Neutrophil Extracellular Traps. Front Cell Infect Microbiol. 2017; 7:414.
PMC: 5613151.
DOI: 10.3389/fcimb.2017.00414.
View
15.
He Y, Liu J, Chen Y, Yan L, Wu J
. Neutrophil Extracellular Traps in Infection. Front Immunol. 2022; 13:913028.
PMC: 9245010.
DOI: 10.3389/fimmu.2022.913028.
View
16.
Taylor C, Fueki N, Agah A, Hershberg R, Colgan S
. Critical role of cAMP response element binding protein expression in hypoxia-elicited induction of epithelial tumor necrosis factor-alpha. J Biol Chem. 1999; 274(27):19447-54.
DOI: 10.1074/jbc.274.27.19447.
View
17.
Mulcahy L, Pink R, Carter D
. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014; 3.
PMC: 4122821.
DOI: 10.3402/jev.v3.24641.
View
18.
Kulig K, Karnas E, Woznicka O, Kuleta P, Zuba-Surma E, Pyza E
. Insight Into the Properties and Immunoregulatory Effect of Extracellular Vesicles Produced by , , and Biofilms. Front Cell Infect Microbiol. 2022; 12:879237.
PMC: 9207348.
DOI: 10.3389/fcimb.2022.879237.
View
19.
Kidd S, Abdolrasouli A, Hagen F
. Fungal Nomenclature: Managing Change is the Name of the Game. Open Forum Infect Dis. 2023; 10(1):ofac559.
PMC: 9825814.
DOI: 10.1093/ofid/ofac559.
View
20.
Mehanny M, Koch M, Lehr C, Fuhrmann G
. Streptococcal Extracellular Membrane Vesicles Are Rapidly Internalized by Immune Cells and Alter Their Cytokine Release. Front Immunol. 2020; 11:80.
PMC: 7034238.
DOI: 10.3389/fimmu.2020.00080.
View