6.
Kulichenko M, Smith J, Nebgen B, Li Y, Fedik N, Boldyrev A
. The Rise of Neural Networks for Materials and Chemical Dynamics. J Phys Chem Lett. 2021; 12(26):6227-6243.
DOI: 10.1021/acs.jpclett.1c01357.
View
7.
Elstner M, Seifert G
. Density functional tight binding. Philos Trans A Math Phys Eng Sci. 2014; 372(2011):20120483.
DOI: 10.1098/rsta.2012.0483.
View
8.
Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Marti C
. Density-functional tight-binding: basic concepts and applications to molecules and clusters. Adv Phys X. 2020; 5(1):1710252.
PMC: 7116320.
DOI: 10.1080/23746149.2019.1710252.
View
9.
Schutt K, Arbabzadah F, Chmiela S, Muller K, Tkatchenko A
. Quantum-chemical insights from deep tensor neural networks. Nat Commun. 2017; 8:13890.
PMC: 5228054.
DOI: 10.1038/ncomms13890.
View
10.
Stocks R, Barnard A
. Enhancing classical gold nanoparticle simulations with electronic corrections and machine learning. J Phys Condens Matter. 2021; 33(32).
DOI: 10.1088/1361-648X/ac0751.
View
11.
Batista E, Martin R, Hay P, Peralta J, Scuseria G
. Density functional investigations of the properties and thermochemistry of UF6 and UF5 using valence-electron and all-electron approaches. J Chem Phys. 2004; 121(5):2144-50.
DOI: 10.1063/1.1768518.
View
12.
Panosetti C, Annies S, Grosu C, Seidlmayer S, Scheurer C
. DFTB Modeling of Lithium-Intercalated Graphite with Machine-Learned Repulsive Potential. J Phys Chem A. 2021; 125(2):691-699.
DOI: 10.1021/acs.jpca.0c09388.
View
13.
Perdew , Burke , Ernzerhof
. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996; 77(18):3865-3868.
DOI: 10.1103/PhysRevLett.77.3865.
View
14.
McSloy A, Fan G, Sun W, Holzer C, Friede M, Ehlert S
. TBMaLT, a flexible toolkit for combining tight-binding and machine learning. J Chem Phys. 2023; 158(3):034801.
DOI: 10.1063/5.0132892.
View
15.
Behler J, Lorenz S, Reuter K
. Representing molecule-surface interactions with symmetry-adapted neural networks. J Chem Phys. 2007; 127(1):014705.
DOI: 10.1063/1.2746232.
View
16.
Kranz J, Kubillus M, Ramakrishnan R, Anatole von Lilienfeld O, Elstner M
. Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning. J Chem Theory Comput. 2018; 14(5):2341-2352.
DOI: 10.1021/acs.jctc.7b00933.
View
17.
Kelley M, Deblonde G, Su J, Booth C, Abergel R, Batista E
. Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO). Inorg Chem. 2018; 57(9):5352-5363.
DOI: 10.1021/acs.inorgchem.8b00345.
View
18.
Porezag , Frauenheim , KOHLER , Seifert , Kaschner
. Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Phys Rev B Condens Matter. 1995; 51(19):12947-12957.
DOI: 10.1103/physrevb.51.12947.
View
19.
Lubbers N, Smith J, Barros K
. Hierarchical modeling of molecular energies using a deep neural network. J Chem Phys. 2018; 148(24):241715.
DOI: 10.1063/1.5011181.
View
20.
Ammothum Kandy A, Wadbro E, Aradi B, Broqvist P, Kullgren J
. Curvature Constrained Splines for DFTB Repulsive Potential Parametrization. J Chem Theory Comput. 2021; 17(3):1771-1781.
PMC: 8023658.
DOI: 10.1021/acs.jctc.0c01156.
View