6.
Summers D, Gibson D, DiAntonio A, Milbrandt J
. SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation. Proc Natl Acad Sci U S A. 2016; 113(41):E6271-E6280.
PMC: 5068253.
DOI: 10.1073/pnas.1601506113.
View
7.
Yang J, Wu Z, Renier N, Simon D, Uryu K, Park D
. Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell. 2015; 160(1-2):161-76.
PMC: 4306654.
DOI: 10.1016/j.cell.2014.11.053.
View
8.
Wakatsuki S, Saitoh F, Araki T
. ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat Cell Biol. 2011; 13(12):1415-23.
DOI: 10.1038/ncb2373.
View
9.
Gerdts J, Summers D, Milbrandt J, DiAntonio A
. Axon Self-Destruction: New Links among SARM1, MAPKs, and NAD+ Metabolism. Neuron. 2016; 89(3):449-60.
PMC: 4742785.
DOI: 10.1016/j.neuron.2015.12.023.
View
10.
Shi Y, Kerry P, Nanson J, Bosanac T, Sasaki Y, Krauss R
. Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules. Mol Cell. 2022; 82(9):1643-1659.e10.
PMC: 9188649.
DOI: 10.1016/j.molcel.2022.03.007.
View
11.
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein M, Geiger T
. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016; 13(9):731-40.
DOI: 10.1038/nmeth.3901.
View
12.
Kim Y, Zhou P, Qian L, Chuang J, Lee J, Li C
. MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J Exp Med. 2007; 204(9):2063-74.
PMC: 2118693.
DOI: 10.1084/jem.20070868.
View
13.
Jiang Y, Liu T, Lee C, Chang Q, Yang J, Zhang Z
. The NAD-mediated self-inhibition mechanism of pro-neurodegenerative SARM1. Nature. 2020; 588(7839):658-663.
DOI: 10.1038/s41586-020-2862-z.
View
14.
Sun X, Duan Y, Qin C, Li J, Duan G, Deng X
. Distinct multilevel misregulations of Parkin and PINK1 revealed in cell and animal models of TDP-43 proteinopathy. Cell Death Dis. 2018; 9(10):953.
PMC: 6148241.
DOI: 10.1038/s41419-018-1022-y.
View
15.
Yamagishi Y, Tessier-Lavigne M
. An Atypical SCF-like Ubiquitin Ligase Complex Promotes Wallerian Degeneration through Regulation of Axonal Nmnat2. Cell Rep. 2016; 17(3):774-782.
PMC: 5075525.
DOI: 10.1016/j.celrep.2016.09.043.
View
16.
Desbois M, Crawley O, Evans P, Baker S, Masuho I, Yasuda R
. PAM forms an atypical SCF ubiquitin ligase complex that ubiquitinates and degrades NMNAT2. J Biol Chem. 2018; 293(36):13897-13909.
PMC: 6130950.
DOI: 10.1074/jbc.RA118.002176.
View
17.
Xue T, Sun Q, Zhang Y, Wu X, Shen H, Li X
. Phosphorylation at S548 as a Functional Switch of Sterile Alpha and TIR Motif-Containing 1 in Cerebral Ischemia/Reperfusion Injury in Rats. Mol Neurobiol. 2020; 58(2):453-469.
DOI: 10.1007/s12035-020-02132-9.
View
18.
Coleman M, Hoke A
. Programmed axon degeneration: from mouse to mechanism to medicine. Nat Rev Neurosci. 2020; 21(4):183-196.
PMC: 8926152.
DOI: 10.1038/s41583-020-0269-3.
View
19.
Li X, Yang G, Zhang W, Qin B, Ye Z, Shi H
. USP13: Multiple Functions and Target Inhibition. Front Cell Dev Biol. 2022; 10:875124.
PMC: 9014248.
DOI: 10.3389/fcell.2022.875124.
View
20.
Wakatsuki S, Tokunaga S, Shibata M, Araki T
. GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration. J Cell Biol. 2017; 216(2):477-493.
PMC: 5294778.
DOI: 10.1083/jcb.201606020.
View