6.
Khan R, Bril F, Cusi K, Newsome P
. Modulation of Insulin Resistance in Nonalcoholic Fatty Liver Disease. Hepatology. 2018; 70(2):711-724.
DOI: 10.1002/hep.30429.
View
7.
Borquez J, Diaz-Castro F, La Fuente F, Espinoza K, Figueroa A, Martinez-Ruiz I
. Mitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD. Metabolism. 2023; 152:155765.
DOI: 10.1016/j.metabol.2023.155765.
View
8.
de Almeida M, Ortenblad N, Petersen M, Schjerning A, Kleis Wentorf E, Jensen K
. Acute exercise increases the contact between lipid droplets and mitochondria independently of obesity and type 2 diabetes. J Physiol. 2023; 601(10):1797-1815.
DOI: 10.1113/JP284386.
View
9.
Benador I, Veliova M, Liesa M, Shirihai O
. Mitochondria Bound to Lipid Droplets: Where Mitochondrial Dynamics Regulate Lipid Storage and Utilization. Cell Metab. 2019; 29(4):827-835.
PMC: 6476311.
DOI: 10.1016/j.cmet.2019.02.011.
View
10.
Zheng Y, Wang S, Wu J, Wang Y
. Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: new insights from pathogenic mechanisms to clinically targeted therapy. J Transl Med. 2023; 21(1):510.
PMC: 10375703.
DOI: 10.1186/s12967-023-04367-1.
View
11.
Badmus O, Hillhouse S, Anderson C, Hinds T, Stec D
. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond). 2022; 136(18):1347-1366.
PMC: 9508552.
DOI: 10.1042/CS20220572.
View
12.
Schlaepfer I, Joshi M
. CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology. 2020; 161(2).
DOI: 10.1210/endocr/bqz046.
View
13.
Fujii H, Kawada N, Japan Study Group Of Nafld Jsg-Nafld
. The Role of Insulin Resistance and Diabetes in Nonalcoholic Fatty Liver Disease. Int J Mol Sci. 2020; 21(11).
PMC: 7312931.
DOI: 10.3390/ijms21113863.
View
14.
Linden M, Lopez K, Fletcher J, Morris E, Meers G, Siddique S
. Combining metformin therapy with caloric restriction for the management of type 2 diabetes and nonalcoholic fatty liver disease in obese rats. Appl Physiol Nutr Metab. 2015; 40(10):1038-47.
PMC: 4713237.
DOI: 10.1139/apnm-2015-0236.
View
15.
Ouyang Q, Chen Q, Ke S, Ding L, Yang X, Rong P
. Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle. Dev Cell. 2023; 58(4):289-305.e6.
DOI: 10.1016/j.devcel.2023.01.007.
View
16.
Ma X, Chen A, Melo L, Clemente-Sanchez A, Chao X, Ahmadi A
. Loss of hepatic DRP1 exacerbates alcoholic hepatitis by inducing megamitochondria and mitochondrial maladaptation. Hepatology. 2022; 77(1):159-175.
PMC: 9744966.
DOI: 10.1002/hep.32604.
View
17.
Yang M, Luo S, Yang J, Chen W, He L, Liu D
. Lipid droplet - mitochondria coupling: A novel lipid metabolism regulatory hub in diabetic nephropathy. Front Endocrinol (Lausanne). 2022; 13:1017387.
PMC: 9640443.
DOI: 10.3389/fendo.2022.1017387.
View
18.
Kim D, Perdomo G, Zhang T, Slusher S, Lee S, Phillips B
. FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes. 2011; 60(11):2763-74.
PMC: 3198083.
DOI: 10.2337/db11-0548.
View
19.
Charni-Natan M, Goldstein I
. Protocol for Primary Mouse Hepatocyte Isolation. STAR Protoc. 2020; 1(2):100086.
PMC: 7580103.
DOI: 10.1016/j.xpro.2020.100086.
View
20.
Benador I, Veliova M, Mahdaviani K, Petcherski A, Wikstrom J, Assali E
. Mitochondria Bound to Lipid Droplets Have Unique Bioenergetics, Composition, and Dynamics that Support Lipid Droplet Expansion. Cell Metab. 2018; 27(4):869-885.e6.
PMC: 5969538.
DOI: 10.1016/j.cmet.2018.03.003.
View