6.
Borner T, Geisler C, Fortin S, Cosgrove R, Alsina-Fernandez J, Dogra M
. GIP Receptor Agonism Attenuates GLP-1 Receptor Agonist-Induced Nausea and Emesis in Preclinical Models. Diabetes. 2021; 70(11):2545-2553.
PMC: 8564411.
DOI: 10.2337/db21-0459.
View
7.
Montaner M, Denom J, Simon V, Jiang W, Holt M, Brierley D
. A neuronal circuit driven by GLP-1 in the olfactory bulb regulates insulin secretion. Nat Commun. 2024; 15(1):6941.
PMC: 11322178.
DOI: 10.1038/s41467-024-51076-4.
View
8.
Prajapati S
. Advances in the Management of Diabetes and Overweight using Incretin-based Pharmacotherapies. Curr Diabetes Rev. 2023; 20(7):e131123223544.
DOI: 10.2174/0115733998256797231009062744.
View
9.
Buenaventura T, Bitsi S, Laughlin W, Burgoyne T, Lyu Z, Oqua A
. Agonist-induced membrane nanodomain clustering drives GLP-1 receptor responses in pancreatic beta cells. PLoS Biol. 2019; 17(8):e3000097.
PMC: 6716783.
DOI: 10.1371/journal.pbio.3000097.
View
10.
McLean B, Wong C, Campbell J, Hodson D, Trapp S, Drucker D
. Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation. Endocr Rev. 2020; 42(2):101-132.
PMC: 7958144.
DOI: 10.1210/endrev/bnaa032.
View
11.
Jones B, Burade V, Akalestou E, Manchanda Y, Ramchunder Z, Carrat G
. In vivo and in vitro characterization of GL0034, a novel long-acting glucagon-like peptide-1 receptor agonist. Diabetes Obes Metab. 2022; 24(11):2090-2101.
PMC: 9796023.
DOI: 10.1111/dom.14794.
View
12.
Georgiadou E, Muralidharan C, Martinez M, Chabosseau P, Akalestou E, Tomas A
. Mitofusins Mfn1 and Mfn2 Are Required to Preserve Glucose- but Not Incretin-Stimulated β-Cell Connectivity and Insulin Secretion. Diabetes. 2022; 71(7):1472-1489.
PMC: 9233298.
DOI: 10.2337/db21-0800.
View
13.
Willard F, Douros J, Gabe M, Showalter A, Wainscott D, Suter T
. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight. 2020; 5(17).
PMC: 7526454.
DOI: 10.1172/jci.insight.140532.
View
14.
Bitsi S, El Eid L, Manchanda Y, Oqua A, Mohamed N, Hansen B
. Divergent acute versus prolonged pharmacological GLP-1R responses in adult β cell-specific β-arrestin 2 knockout mice. Sci Adv. 2023; 9(18):eadf7737.
PMC: 10156113.
DOI: 10.1126/sciadv.adf7737.
View
15.
Zaffina I, Pelle M, Armentaro G, Giofre F, Cassano V, Sciacqua A
. Effect of dual glucose-dependent insulinotropic peptide/glucagon-like peptide-1 receptor agonist on weight loss in subjects with obesity. Front Endocrinol (Lausanne). 2023; 14:1095753.
PMC: 9992880.
DOI: 10.3389/fendo.2023.1095753.
View
16.
Nauck M
. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab. 2015; 18(3):203-16.
PMC: 4785614.
DOI: 10.1111/dom.12591.
View
17.
Campbell J, Muller T, Finan B, DiMarchi R, Tschop M, DAlessio D
. GIPR/GLP-1R dual agonist therapies for diabetes and weight loss-chemistry, physiology, and clinical applications. Cell Metab. 2023; 35(9):1519-1529.
PMC: 10528201.
DOI: 10.1016/j.cmet.2023.07.010.
View
18.
Jastreboff A, le Roux C, Stefanski A, Aronne L, Halpern B, Wharton S
. Tirzepatide for Obesity Treatment and Diabetes Prevention. N Engl J Med. 2024; 392(10):958-971.
DOI: 10.1056/NEJMoa2410819.
View
19.
Gromada J, Ding W, Barg S, Renstrom E, Rorsman P
. Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors. Pflugers Arch. 1997; 434(5):515-24.
DOI: 10.1007/s004240050431.
View
20.
Oduori O, Murao N, Shimomura K, Takahashi H, Zhang Q, Dou H
. Gs/Gq signaling switch in β cells defines incretin effectiveness in diabetes. J Clin Invest. 2020; 130(12):6639-6655.
PMC: 7685756.
DOI: 10.1172/JCI140046.
View