6.
Kuznetsova I, Sulatskaya A, Uversky V, Turoverov K
. Analyzing thioflavin T binding to amyloid fibrils by an equilibrium microdialysis-based technique. PLoS One. 2012; 7(2):e30724.
PMC: 3286464.
DOI: 10.1371/journal.pone.0030724.
View
7.
Ma X, Liu L, Meng J
. MicroRNA-125b promotes neurons cell apoptosis and Tau phosphorylation in Alzheimer's disease. Neurosci Lett. 2017; 661:57-62.
DOI: 10.1016/j.neulet.2017.09.043.
View
8.
Ladomersky E, Scholtens D, Kocherginsky M, Hibler E, Bartom E, Otto-Meyer S
. The Coincidence Between Increasing Age, Immunosuppression, and the Incidence of Patients With Glioblastoma. Front Pharmacol. 2019; 10:200.
PMC: 6446059.
DOI: 10.3389/fphar.2019.00200.
View
9.
Sarkar B, Mithu V, Chandra B, Mandal A, Chandrakesan M, Bhowmik D
. Significant structural differences between transient amyloid-β oligomers and less-toxic fibrils in regions known to harbor familial Alzheimer's mutations. Angew Chem Int Ed Engl. 2014; 53(27):6888-92.
DOI: 10.1002/anie.201402636.
View
10.
Xu L, Sun L, Zeng F, Wu S
. Activatable fluorescent probe based on aggregation-induced emission for detecting hypoxia-related pathological conditions. Anal Chim Acta. 2020; 1125:152-161.
DOI: 10.1016/j.aca.2020.05.046.
View
11.
Kim W, Bonoiu A, Hayakawa T, Xia C, Kakimoto M, Pudavar H
. Hyperbranched polysiloxysilane nanoparticles: surface charge control of nonviral gene delivery vectors and nanoprobes. Int J Pharm. 2009; 376(1-2):141-52.
DOI: 10.1016/j.ijpharm.2009.04.023.
View
12.
Fu W, Yan C, Guo Z, Zhang J, Zhang H, Tian H
. Rational Design of Near-Infrared Aggregation-Induced-Emission-Active Probes: In Situ Mapping of Amyloid-β Plaques with Ultrasensitivity and High-Fidelity. J Am Chem Soc. 2019; 141(7):3171-3177.
DOI: 10.1021/jacs.8b12820.
View
13.
Gundemir S, Monteagudo A, Akbar A, Keillor J, Johnson G
. The complex role of transglutaminase 2 in glioblastoma proliferation. Neuro Oncol. 2016; 19(2):208-218.
PMC: 5464277.
DOI: 10.1093/neuonc/now157.
View
14.
Wang Y, Chen M, Alifu N, Li S, Qin W, Qin A
. Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon Fluorescence Imaging of Mouse. ACS Nano. 2017; 11(10):10452-10461.
DOI: 10.1021/acsnano.7b05645.
View
15.
Ding F, Feng J, Zhang X, Sun J, Fan C, Ge Z
. Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Adv Drug Deliv Rev. 2021; 173:141-163.
DOI: 10.1016/j.addr.2021.03.008.
View
16.
Larson D, Zipfel W, Williams R, Clark S, Bruchez M, Wise F
. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science. 2003; 300(5624):1434-6.
DOI: 10.1126/science.1083780.
View
17.
Robinson J, Tabakman S, Liang Y, Wang H, Sanchez Casalongue H, Vinh D
. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc. 2011; 133(17):6825-31.
DOI: 10.1021/ja2010175.
View
18.
Malekjani N, Jafari S
. Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Compr Rev Food Sci Food Saf. 2021; 20(1):3-47.
DOI: 10.1111/1541-4337.12660.
View
19.
Cai X, Bandla A, Mao D, Feng G, Qin W, Liao L
. Biocompatible Red Fluorescent Organic Nanoparticles with Tunable Size and Aggregation-Induced Emission for Evaluation of Blood-Brain Barrier Damage. Adv Mater. 2016; 28(39):8760-8765.
DOI: 10.1002/adma.201601191.
View
20.
Kawaguchi T, Sonoda Y, Shibahara I, Saito R, Kanamori M, Kumabe T
. Impact of gross total resection in patients with WHO grade III glioma harboring the IDH 1/2 mutation without the 1p/19q co-deletion. J Neurooncol. 2016; 129(3):505-514.
DOI: 10.1007/s11060-016-2201-2.
View