6.
Wang H, Ji F, Zhang Y, Hou J, Liu W, Huang J
. Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium toxicity. Plant Cell Environ. 2019; 42(8):2340-2356.
DOI: 10.1111/pce.13555.
View
7.
Xi H, Nguyen V, Ward C, Liu Z, Searle I
. Chromosome-level assembly of the common vetch reference genome. GigaByte. 2023; 2022:gigabyte38.
PMC: 9650280.
DOI: 10.46471/gigabyte.38.
View
8.
Xu J, Si L, Zhang X, Cao K, Wang J
. Various green manure-fertilizer combinations affect the soil microbial community and function in immature red soil. Front Microbiol. 2024; 14:1255056.
PMC: 10757628.
DOI: 10.3389/fmicb.2023.1255056.
View
9.
Ramirez-Parra E, De la Rosa L
. Designing Novel Strategies for Improving Old Legumes: An Overview from Common Vetch. Plants (Basel). 2023; 12(6).
PMC: 10058852.
DOI: 10.3390/plants12061275.
View
10.
Silva I, Smyth T, Raper C, Carter T, Rufty T
. Differential aluminum tolerance in soybean: An evaluation of the role of organic acids. Physiol Plant. 2001; 112(2):200-210.
DOI: 10.1034/j.1399-3054.2001.1120208.x.
View
11.
Jia Y, Pradeep K, Vance W, Zhang X, Weir B, Wei H
. Identification of two chickpea multidrug and toxic compound extrusion transporter genes transcriptionally upregulated upon aluminum treatment in root tips. Front Plant Sci. 2022; 13:909045.
PMC: 9389367.
DOI: 10.3389/fpls.2022.909045.
View
12.
Wang Z, Liu Y, Cui W, Gong L, He Y, Zhang Q
. Characterization of GmMATE13 in its contribution of citrate efflux and aluminum resistance in soybeans. Front Plant Sci. 2022; 13:1027560.
PMC: 9634752.
DOI: 10.3389/fpls.2022.1027560.
View
13.
Yan W, Lu P, Liu Y, Hou Z, Fu L, Shi J
. Comprehensive evaluation of phosphate deficiency tolerance in common vetch germplasms and the adaption mechanism to phosphate deficiency. J Plant Physiol. 2024; 302:154317.
DOI: 10.1016/j.jplph.2024.154317.
View
14.
Miao Y, Hu X, Wang L, Schultze-Kraft R, Wang W, Chen Z
. Characterization of SgALMT genes reveals the function of SgALMT2 in conferring aluminum tolerance in Stylosanthes guianensis through the mediation of malate exudation. Plant Physiol Biochem. 2024; 208:108535.
DOI: 10.1016/j.plaphy.2024.108535.
View
15.
Quinones M, Lucas M, Pueyo J
. Adaptive Mechanisms Make Lupin a Choice Crop for Acidic Soils Affected by Aluminum Toxicity. Front Plant Sci. 2022; 12:810692.
PMC: 8766672.
DOI: 10.3389/fpls.2021.810692.
View
16.
Karim M, Dong X, Zheng L, Shen R, Lan P
. Can Aluminum Tolerant Wheat Cultivar Perform Better under Phosphate Deficient Conditions?. Int J Mol Sci. 2018; 19(10).
PMC: 6213158.
DOI: 10.3390/ijms19102964.
View
17.
Jin D, Chen J, Kang Y, Yang F, Yu D, Liu X
. Genome-wide characterization, transcriptome profiling, and functional analysis of the ALMT gene family in Medicago for aluminum resistance. J Plant Physiol. 2024; 297:154262.
DOI: 10.1016/j.jplph.2024.154262.
View
18.
Li Y, Zhang Y, Zhou Y, Yang J, Zheng S
. Protecting cell walls from binding aluminum by organic acids contributes to aluminum resistance. J Integr Plant Biol. 2009; 51(6):574-80.
DOI: 10.1111/j.1744-7909.2009.00825.x.
View
19.
Xu L, Tang G, Wu D, Zhang J
. Yield and nutrient composition of forage crops and their effects on soil characteristics of winter fallow paddy in South China. Front Plant Sci. 2024; 14:1292114.
PMC: 10825004.
DOI: 10.3389/fpls.2023.1292114.
View
20.
Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K
. An aluminum-activated citrate transporter in barley. Plant Cell Physiol. 2007; 48(8):1081-91.
DOI: 10.1093/pcp/pcm091.
View