6.
Lindberg L, Willfor S, Holmbom B
. Antibacterial effects of knotwood extractives on paper mill bacteria. J Ind Microbiol Biotechnol. 2004; 31(3):137-47.
DOI: 10.1007/s10295-004-0132-y.
View
7.
Ma R, Luo J, Wang W, Song T, Fu Y
. Function of the R2R3-MYB Transcription Factors in and Their Relationship with Heartwood Formation. Int J Mol Sci. 2023; 24(15).
PMC: 10419101.
DOI: 10.3390/ijms241512430.
View
8.
Zha W, Zhang F, Shao J, Ma X, Zhu J, Sun P
. Rationally engineering santalene synthase to readjust the component ratio of sandalwood oil. Nat Commun. 2022; 13(1):2508.
PMC: 9076924.
DOI: 10.1038/s41467-022-30294-8.
View
9.
Nagai S, Utsumi Y
. The function of intercellular spaces along the ray parenchyma in sapwood, intermediate wood, and heartwood of Cryptomeria japonica (Cupressaceae). Am J Bot. 2012; 99(9):1553-61.
DOI: 10.3732/ajb.1200160.
View
10.
Guerriero G, Sergeant K, Hausman J
. Wood biosynthesis and typologies: a molecular rhapsody. Tree Physiol. 2014; 34(8):839-55.
DOI: 10.1093/treephys/tpu031.
View
11.
Diaz-Chavez M, Moniodis J, Madilao L, Jancsik S, Keeling C, Barbour E
. Biosynthesis of Sandalwood Oil: Santalum album CYP76F cytochromes P450 produce santalols and bergamotol. PLoS One. 2013; 8(9):e75053.
PMC: 3854609.
DOI: 10.1371/journal.pone.0075053.
View
12.
Ekeberg D, Flaete P, Eikenes M, Fongen M, Naess-Andresen C
. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J Chromatogr A. 2006; 1109(2):267-72.
DOI: 10.1016/j.chroma.2006.01.027.
View
13.
Zhang R, Zhang Z, Yan C, Chen Z, Li X, Zeng B
. Comparative physiological, biochemical, metabolomic, and transcriptomic analyses reveal the formation mechanism of heartwood for Acacia melanoxylon. BMC Plant Biol. 2024; 24(1):308.
PMC: 11034122.
DOI: 10.1186/s12870-024-04884-1.
View
14.
Celedon J, Bohlmann J
. An extended model of heartwood secondary metabolism informed by functional genomics. Tree Physiol. 2017; 38(3):311-319.
DOI: 10.1093/treephys/tpx070.
View
15.
Lachaud S, Catesson A, Bonnemain J
. Structure and functions of the vascular cambium. C R Acad Sci III. 1999; 322(8):633-50.
DOI: 10.1016/s0764-4469(99)80103-6.
View
16.
Lim K, Paasela T, Harju A, Venalainen M, Paulin L, Auvinen P
. Developmental Changes in Scots Pine Transcriptome during Heartwood Formation. Plant Physiol. 2016; 172(3):1403-1417.
PMC: 5100788.
DOI: 10.1104/pp.16.01082.
View
17.
Magel E, Hillinger C, Wagner T, Holl W
. Oxidative pentose phosphate pathway and pyridine nucleotides in relation to heartwood formation in Robinia pseudoacacia L. Phytochemistry. 2001; 57(7):1061-8.
DOI: 10.1016/s0031-9422(01)00091-7.
View
18.
Nakada R, Fukatsu E
. Seasonal variation of heartwood formation in Larix kaempferi. Tree Physiol. 2012; 32(12):1497-508.
DOI: 10.1093/treephys/tps108.
View
19.
Ma R, Luo J, Wang W, Fu Y
. Changes in the physiological activity of parenchyma cells in Dalbergia odorifera xylem and its relationship with heartwood formation. BMC Plant Biol. 2023; 23(1):559.
PMC: 10644609.
DOI: 10.1186/s12870-023-04592-2.
View
20.
Tzin V, Malitsky S, Moyal Ben Zvi M, Bedair M, Sumner L, Aharoni A
. Expression of a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytol. 2012; 194(2):430-439.
DOI: 10.1111/j.1469-8137.2012.04052.x.
View