6.
Oliveira R, Oliveira-Filho E, Fernandes A, Brito C, Marques E, Tenorio M
. Previous dengue or Zika virus exposure can drive to infection enhancement or neutralisation of other flaviviruses. Mem Inst Oswaldo Cruz. 2019; 114:e190098.
PMC: 6690646.
DOI: 10.1590/0074-02760190098.
View
7.
Hardy J, REEVES W, Sjogren R
. Variations in the susceptiblility of field and laboratory populations of Culex tarsalis to experimental infection with western equine encephalomyelitis virus. Am J Epidemiol. 1976; 103(5):498-505.
DOI: 10.1093/oxfordjournals.aje.a112251.
View
8.
Paulson S, Grimstad P, Craig Jr G
. Midgut and salivary gland barriers to La Crosse virus dissemination in mosquitoes of the Aedes triseriatus group. Med Vet Entomol. 1989; 3(2):113-23.
DOI: 10.1111/j.1365-2915.1989.tb00485.x.
View
9.
Furtado N, Raphael L, Pereira Ribeiro I, de Mello I, Fernandes D, Gomez M
. Biological Characterization of Yellow Fever Viruses Isolated From Non-human Primates in Brazil With Distinct Genomic Landscapes. Front Microbiol. 2022; 13:757084.
PMC: 8882863.
DOI: 10.3389/fmicb.2022.757084.
View
10.
Shinde D, Plante J, Plante K, Weaver S
. Yellow Fever: Roles of Animal Models and Arthropod Vector Studies in Understanding Epidemic Emergence. Microorganisms. 2022; 10(8).
PMC: 9412558.
DOI: 10.3390/microorganisms10081578.
View
11.
Minetti C, Ingham V, Ranson H
. Effects of insecticide resistance and exposure on Plasmodium development in Anopheles mosquitoes. Curr Opin Insect Sci. 2020; 39:42-49.
DOI: 10.1016/j.cois.2019.12.001.
View
12.
GILLETT J, ROSS R
. The laboratory transmission of yellow fever by Aëdes (Stegomyia) aegypti (Linnaeus) from Malaya. Ann Trop Med Parasitol. 1955; 49(1):63-5.
DOI: 10.1080/00034983.1955.11685652.
View
13.
Agarwal A, Parida M, Dash P
. Impact of transmission cycles and vector competence on global expansion and emergence of arboviruses. Rev Med Virol. 2017; .
DOI: 10.1002/rmv.1941.
View
14.
Lorenz L, Beaty B, AITKEN T, Wallis G, Tabachnick W
. The effect of colonization upon aedes aegypti susceptibility to oral infection with yellow fever virus. Am J Trop Med Hyg. 1984; 33(4):690-4.
DOI: 10.4269/ajtmh.1984.33.690.
View
15.
Atyame C, Alout H, Mousson L, Vazeille M, Diallo M, Weill M
. Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus. Proc Biol Sci. 2019; 286(1894):20182273.
PMC: 6367175.
DOI: 10.1098/rspb.2018.2273.
View
16.
Possas C, Lourenco-de-Oliveira R, Tauil P, De Paula Pinheiro F, Pissinatti A, da Cunha R
. Yellow fever outbreak in Brazil: the puzzle of rapid viral spread and challenges for immunisation. Mem Inst Oswaldo Cruz. 2018; 113(10):e180278.
PMC: 6135548.
DOI: 10.1590/0074-02760180278.
View
17.
Amaku M, Coutinho F, Massad E
. Why dengue and yellow fever coexist in some areas of the world and not in others?. Biosystems. 2011; 106(2-3):111-20.
DOI: 10.1016/j.biosystems.2011.07.004.
View
18.
Dong S, Balaraman V, Kantor A, Lin J, Grant D, Held N
. Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion. PLoS Negl Trop Dis. 2017; 11(9):e0005976.
PMC: 5636170.
DOI: 10.1371/journal.pntd.0005976.
View
19.
Kabula B, Tungu P, Rippon E, Steen K, Kisinza W, Magesa S
. A significant association between deltamethrin resistance, Plasmodium falciparum infection and the Vgsc-1014S resistance mutation in Anopheles gambiae highlights the epidemiological importance of resistance markers. Malar J. 2016; 15(1):289.
PMC: 4877992.
DOI: 10.1186/s12936-016-1331-5.
View
20.
Lopes R, Pinto J, da Silva Junior G, Santos A, Souza M, Daher E
. Kidney involvement in yellow fever: a review. Rev Inst Med Trop Sao Paulo. 2019; 61:e35.
PMC: 6648004.
DOI: 10.1590/S1678-9946201961035.
View