6.
Liu L, Li Y, Wang X, Guo W
. A phosphoethanolamine transferase specific for the 4'-phosphate residue of Cronobacter sakazakii lipid A. J Appl Microbiol. 2016; 121(5):1444-1456.
DOI: 10.1111/jam.13280.
View
7.
Modi M, Thambiraja M, Cherukat A, Yennamalli R, Priyadarshini R
. Structure predictions and functional insights into Amidase_3 domain containing N-acetylmuramyl-L-alanine amidases from Deinococcus indicus DR1. BMC Microbiol. 2024; 24(1):101.
PMC: 10964502.
DOI: 10.1186/s12866-024-03225-4.
View
8.
Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B
. Bacteriophages and phage-derived proteins--application approaches. Curr Med Chem. 2015; 22(14):1757-73.
PMC: 4468916.
DOI: 10.2174/0929867322666150209152851.
View
9.
Canard B, Cole S
. Genomic diversity and organization of virulence genes in the pathogenic anaerobe Clostridium perfringens. Mol Microbiol. 1992; 6(11):1421-9.
DOI: 10.1111/j.1365-2958.1992.tb00862.x.
View
10.
Ho K
. Bacteriophage therapy for bacterial infections. Rekindling a memory from the pre-antibiotics era. Perspect Biol Med. 2001; 44(1):1-16.
DOI: 10.1353/pbm.2001.0006.
View
11.
Lin Y, Jiao Y, Yuan Y, Zhou Z, Zheng Y, Xiao J
. Propionibacterium acnes induces intervertebral disc degeneration by promoting nucleus pulposus cell apoptosis via the TLR2/JNK/mitochondrial-mediated pathway. Emerg Microbes Infect. 2018; 7(1):1.
PMC: 5837142.
DOI: 10.1038/s41426-017-0002-0.
View
11.
Brynestad S, Granum P
. Clostridium perfringens and foodborne infections. Int J Food Microbiol. 2002; 74(3):195-202.
DOI: 10.1016/s0168-1605(01)00680-8.
View
12.
Kiu R, Hall L
. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect. 2018; 7(1):141.
PMC: 6079034.
DOI: 10.1038/s41426-018-0144-8.
View
13.
Khan F, Chen J, Zhang R, Liu B
. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: recent advances, challenges, and future perspective. Front Microbiol. 2023; 14:1259210.
PMC: 10588457.
DOI: 10.3389/fmicb.2023.1259210.
View
14.
Shephard J, McQuillan A, Bremer P
. Mechanisms of Cation Exchange by Pseudomonas aeruginosa PAO1 and PAO1 wbpL, a Strain with a Truncated Lipopolysaccharide. Appl Environ Microbiol. 2008; 74(22):6980-6.
PMC: 2583508.
DOI: 10.1128/AEM.01117-08.
View
15.
Bendary M, Abd El-Hamid M, El-Tarabili R, Hefny A, Algendy R, Elzohairy N
. Associated with Foodborne Infections of Animal Origins: Insights into Prevalence, Antimicrobial Resistance, Toxin Genes Profiles, and Toxinotypes. Biology (Basel). 2022; 11(4).
PMC: 9028928.
DOI: 10.3390/biology11040551.
View
16.
Antonova N, Vasina D, Rubalsky E, Fursov M, Savinova A, Grigoriev I
. Modulation of Endolysin LysECD7 Bactericidal Activity by Different Peptide Tag Fusion. Biomolecules. 2020; 10(3).
PMC: 7175214.
DOI: 10.3390/biom10030440.
View
17.
Son B, Kong M, Lee Y, Ryu S
. Development of a Novel Chimeric Endolysin, Lys109 With Enhanced Lytic Activity Against . Front Microbiol. 2021; 11:615887.
PMC: 7843465.
DOI: 10.3389/fmicb.2020.615887.
View
18.
Colavecchio A, Cadieux B, Lo A, Goodridge L
. Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Family - A Review. Front Microbiol. 2017; 8:1108.
PMC: 5476706.
DOI: 10.3389/fmicb.2017.01108.
View
19.
Lu R, Liu B, Wu L, Bao H, Garcia P, Wang Y
. A Broad-Spectrum Phage Endolysin (LysCP28) Able to Remove Biofilms and Inactivate Strains. Foods. 2023; 12(2).
PMC: 9858456.
DOI: 10.3390/foods12020411.
View