6.
Formery L, Orange F, Formery A, Yaguchi S, Lowe C, Schubert M
. Neural anatomy of echinoid early juveniles and comparison of nervous system organization in echinoderms. J Comp Neurol. 2020; 529(6):1135-1156.
DOI: 10.1002/cne.25012.
View
7.
Tosches M, Arendt D
. The bilaterian forebrain: an evolutionary chimaera. Curr Opin Neurobiol. 2013; 23(6):1080-9.
DOI: 10.1016/j.conb.2013.09.005.
View
8.
Sinigaglia C, Busengdal H, Leclere L, Technau U, Rentzsch F
. The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol. 2013; 11(2):e1001488.
PMC: 3586664.
DOI: 10.1371/journal.pbio.1001488.
View
9.
Holland L, Carvalho J, Escriva H, Laudet V, Schubert M, Shimeld S
. Evolution of bilaterian central nervous systems: a single origin?. Evodevo. 2013; 4(1):27.
PMC: 3856589.
DOI: 10.1186/2041-9139-4-27.
View
10.
Kazanskaya O, Glinka A, Niehrs C
. The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning. Development. 2000; 127(22):4981-92.
DOI: 10.1242/dev.127.22.4981.
View
11.
Beccari L, Marco-Ferreres R, Bovolenta P
. The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev. 2012; 130(2-3):95-111.
DOI: 10.1016/j.mod.2012.10.004.
View
12.
Nielsen C
. Larval and adult brains. Evol Dev. 2005; 7(5):483-9.
DOI: 10.1111/j.1525-142X.2005.05051.x.
View
13.
Choi H, Schwarzkopf M, Fornace M, Acharya A, Artavanis G, Stegmaier J
. Third-generation hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development. 2018; 145(12).
PMC: 6031405.
DOI: 10.1242/dev.165753.
View
14.
Carvalho J, Lahaye F, Yong L, Croce J, Escriva H, Yu J
. An Updated Staging System for Cephalochordate Development: One Table Suits Them All. Front Cell Dev Biol. 2021; 9:668006.
PMC: 8174843.
DOI: 10.3389/fcell.2021.668006.
View
15.
Foster S, Oulhen N, Wessel G
. A single cell RNA sequencing resource for early sea urchin development. Development. 2020; 147(17).
PMC: 7502599.
DOI: 10.1242/dev.191528.
View
16.
Khadka A, Martinez-Bartolome M, Burr S, Range R
. A novel gene's role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos. Evodevo. 2018; 9:1.
PMC: 5778778.
DOI: 10.1186/s13227-017-0089-3.
View
17.
McGrew L, Hoppler S, Moon R
. Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech Dev. 1998; 69(1-2):105-14.
DOI: 10.1016/s0925-4773(97)00160-3.
View
18.
Cheatle Jarvela A, Yankura K, Hinman V
. A gene regulatory network for apical organ neurogenesis and its spatial control in sea star embryos. Development. 2016; 143(22):4214-4223.
DOI: 10.1242/dev.134999.
View
19.
Pani A, Mullarkey E, Aronowicz J, Assimacopoulos S, Grove E, Lowe C
. Ancient deuterostome origins of vertebrate brain signalling centres. Nature. 2012; 483(7389):289-94.
PMC: 3719855.
DOI: 10.1038/nature10838.
View
20.
Formery L, Peluso P, Kohnle I, Malnick J, Thompson J, Pitel M
. Molecular evidence of anteroposterior patterning in adult echinoderms. Nature. 2023; 623(7987):555-561.
DOI: 10.1038/s41586-023-06669-2.
View