6.
Roy M, Gascon P, Giuliani D
. Macular blood flow velocity in sickle cell disease: relation to red cell density. Br J Ophthalmol. 1995; 79(8):742-5.
PMC: 505236.
DOI: 10.1136/bjo.79.8.742.
View
7.
Micevych P, Soetikno B, Fawzi A
. Perivenular Capillary Loss: An Early, Quantifiable Change in Macular Telangiectasia Type 2. Transl Vis Sci Technol. 2020; 9(4):5.
PMC: 7396175.
DOI: 10.1167/tvst.9.4.5.
View
8.
Bennett A, Rudnicka A, Edgar D
. Improvements on Littmann's method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol. 1994; 232(6):361-7.
DOI: 10.1007/BF00175988.
View
9.
Quinn C
. Minireview: Clinical severity in sickle cell disease: the challenges of definition and prognostication. Exp Biol Med (Maywood). 2016; 241(7):679-88.
PMC: 4871738.
DOI: 10.1177/1535370216640385.
View
10.
Mo S, Phillips E, Krawitz B, Garg R, Salim S, Geyman L
. Visualization of Radial Peripapillary Capillaries Using Optical Coherence Tomography Angiography: The Effect of Image Averaging. PLoS One. 2017; 12(1):e0169385.
PMC: 5222511.
DOI: 10.1371/journal.pone.0169385.
View
11.
Brasileiro F, Martins T, Campos S, Andrade Neto J, Bravo-Filho V, Araujo A
. Macular and peripapillary spectral domain optical coherence tomography changes in sickle cell retinopathy. Retina. 2014; 35(2):257-63.
DOI: 10.1097/IAE.0000000000000309.
View
12.
Murthy R, Grover S, Chalam K
. Temporal macular thinning on spectral-domain optical coherence tomography in proliferative sickle cell retinopathy. Arch Ophthalmol. 2011; 129(2):247-9.
DOI: 10.1001/archophthalmol.2010.357.
View
13.
Lynch G, Scott A, Linz M, Han I, Andrade Romo J, Linderman R
. Foveal avascular zone morphology and parafoveal capillary perfusion in sickle cell retinopathy. Br J Ophthalmol. 2019; 104(4):473-479.
PMC: 6980907.
DOI: 10.1136/bjophthalmol-2019-314567.
View
14.
Balaratnasingam C, An D, Sakurada Y, Lee C, Lee A, McAllister I
. Comparisons Between Histology and Optical Coherence Tomography Angiography of the Periarterial Capillary-Free Zone. Am J Ophthalmol. 2018; 189:55-64.
PMC: 6132062.
DOI: 10.1016/j.ajo.2018.02.007.
View
15.
Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu J
. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012; 20(4):4710-25.
PMC: 3381646.
DOI: 10.1364/OE.20.004710.
View
16.
Abay R, Akdeniz G, Katipoglu Z, Kerimoglu H
. Normative data assessment of age-related changes in macular and optic nerve head vessel density using optical coherence tomography angiography. Photodiagnosis Photodyn Ther. 2021; 37:102624.
DOI: 10.1016/j.pdpdt.2021.102624.
View
17.
Ishibazawa A, Mehta N, Sorour O, Braun P, Martin S, Alibhai A
. Accuracy and Reliability in Differentiating Retinal Arteries and Veins Using Widefield En Face OCT Angiography. Transl Vis Sci Technol. 2019; 8(3):60.
PMC: 6602142.
DOI: 10.1167/tvst.8.3.60.
View
18.
Fares S, Hajjar S, Romana M, Connes P, Acomat M, Zorobabel C
. Sickle Cell Maculopathy: Microstructural Analysis Using OCTA and Identification of Genetic, Systemic, and Biological Risk Factors. Am J Ophthalmol. 2021; 224:7-17.
DOI: 10.1016/j.ajo.2020.11.019.
View
19.
Zhou D, Scott A, Linz M, Han I, Castanos M, Lynch G
. Interocular asymmetry of foveal avascular zone morphology and parafoveal capillary density in sickle cell retinopathy. PLoS One. 2020; 15(6):e0234151.
PMC: 7286490.
DOI: 10.1371/journal.pone.0234151.
View
20.
Mokrane A, Gazeau G, Levy V, Fajnkuchen F, Giocanti-Auregan A
. Analysis of the foveal microvasculature in sickle cell disease using swept-source optical coherence tomography angiography. Sci Rep. 2020; 10(1):11795.
PMC: 7366709.
DOI: 10.1038/s41598-020-68625-8.
View