6.
Ludwig C, Gillet L, Rosenberger G, Amon S, Collins B, Aebersold R
. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol. 2018; 14(8):e8126.
PMC: 6088389.
DOI: 10.15252/msb.20178126.
View
7.
Zhao Y, MacGurn J, Liu M, Emr S
. The ART-Rsp5 ubiquitin ligase network comprises a plasma membrane quality control system that protects yeast cells from proteotoxic stress. Elife. 2013; 2:e00459.
PMC: 3628405.
DOI: 10.7554/eLife.00459.
View
8.
Anders S, Huber W
. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):R106.
PMC: 3218662.
DOI: 10.1186/gb-2010-11-10-r106.
View
9.
Rey O, Danchin E, Mirouze M, Loot C, Blanchet S
. Adaptation to Global Change: A Transposable Element-Epigenetics Perspective. Trends Ecol Evol. 2016; 31(7):514-526.
DOI: 10.1016/j.tree.2016.03.013.
View
10.
Szklarczyk D, Gable A, Lyon D, Junge A, Wyder S, Huerta-Cepas J
. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018; 47(D1):D607-D613.
PMC: 6323986.
DOI: 10.1093/nar/gky1131.
View
11.
Tiwari S, Thakur R, Shankar J
. Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi. Biotechnol Res Int. 2016; 2015:132635.
PMC: 4736001.
DOI: 10.1155/2015/132635.
View
12.
Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B
. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006; 34(Web Server issue):W435-9.
PMC: 1538822.
DOI: 10.1093/nar/gkl200.
View
13.
Yaakoub H, Mina S, Calenda A, Bouchara J, Papon N
. Oxidative stress response pathways in fungi. Cell Mol Life Sci. 2022; 79(6):333.
PMC: 11071803.
DOI: 10.1007/s00018-022-04353-8.
View
14.
Zhang C, Shi X, Zhang J, Zhang Y, Liu W, Wang W
. Integration of Metabolomes and Transcriptomes Provides Insights into Morphogenesis and Maturation in . J Fungi (Basel). 2023; 9(12).
PMC: 10744280.
DOI: 10.3390/jof9121143.
View
15.
Zhang X, Ren A, Li M, Cao P, Chen T, Zhang G
. Heat Stress Modulates Mycelium Growth, Heat Shock Protein Expression, Ganoderic Acid Biosynthesis, and Hyphal Branching of Ganoderma lucidum via Cytosolic Ca2. Appl Environ Microbiol. 2016; 82(14):4112-4125.
PMC: 4959220.
DOI: 10.1128/AEM.01036-16.
View
16.
Fuchs B, Mylonakis E
. Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell. 2009; 8(11):1616-25.
PMC: 2772411.
DOI: 10.1128/EC.00193-09.
View
17.
Rodrigues-Pousada C, Devaux F, Caetano S, Pimentel C, Da Silva S, Cordeiro A
. Yeast AP-1 like transcription factors (Yap) and stress response: a current overview. Microb Cell. 2019; 6(6):267-285.
PMC: 6545440.
DOI: 10.15698/mic2019.06.679.
View
18.
Lei M, Wu X, Huang C, Qiu Z, Wang L, Zhang R
. Trehalose induced by reactive oxygen species relieved the radial growth defects of Pleurotus ostreatus under heat stress. Appl Microbiol Biotechnol. 2019; 103(13):5379-5390.
DOI: 10.1007/s00253-019-09834-8.
View
19.
Zhang H, Shao S, Zeng Y, Wang X, Qin Y, Ren Q
. Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock. Nat Cell Biol. 2022; 24(3):340-352.
DOI: 10.1038/s41556-022-00846-7.
View
20.
Shahsavarani H, Sugiyama M, Kaneko Y, Chuenchit B, Harashima S
. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnol Adv. 2011; 30(6):1289-300.
DOI: 10.1016/j.biotechadv.2011.09.002.
View