6.
Huang C, Chung C, Hu T, Chen J, Liu P, Chen C
. Recent progress in TGF-β inhibitors for cancer therapy. Biomed Pharmacother. 2020; 134:111046.
DOI: 10.1016/j.biopha.2020.111046.
View
7.
Delgado D, Chernoff M, Huang L, Tong L, Chen L, Jasmine F
. Rare, Protein-Altering Variants in and Arsenic Metabolism Efficiency: A Multi-Population Association Study. Environ Health Perspect. 2021; 129(4):47007.
PMC: 8041273.
DOI: 10.1289/EHP8152.
View
8.
Li S, Na R, Li X, Zhang Y, Zheng T
. Targeting interleukin-17 enhances tumor response to immune checkpoint inhibitors in colorectal cancer. Biochim Biophys Acta Rev Cancer. 2022; 1877(4):188758.
DOI: 10.1016/j.bbcan.2022.188758.
View
9.
Siljamaki E, Riihila P, Suwal U, Nissinen L, Rappu P, Kallajoki M
. Inhibition of TGF-β signaling, invasion, and growth of cutaneous squamous cell carcinoma by PLX8394. Oncogene. 2023; 42(49):3633-3647.
PMC: 10691969.
DOI: 10.1038/s41388-023-02863-8.
View
10.
Wu L, Chen X, Zhao J, Martin B, Zepp J, Ko J
. A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis. J Exp Med. 2015; 212(10):1571-87.
PMC: 4577838.
DOI: 10.1084/jem.20150204.
View
11.
. Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012; 100(Pt C):11-465.
PMC: 4781271.
View
12.
Siljamaki E, Rappu P, Riihila P, Nissinen L, Kahari V, Heino J
. H-Ras activation and fibroblast-induced TGF-β signaling promote laminin-332 accumulation and invasion in cutaneous squamous cell carcinoma. Matrix Biol. 2019; 87:26-47.
DOI: 10.1016/j.matbio.2019.09.001.
View
13.
Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V
. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 2016; 48(4):398-406.
DOI: 10.1038/ng.3525.
View
14.
Zhao J, Chen X, Herjan T, Li X
. The role of interleukin-17 in tumor development and progression. J Exp Med. 2019; 217(1).
PMC: 7037244.
DOI: 10.1084/jem.20190297.
View
15.
Zhou Y, Bizzaro J, Marx K
. Homopolymer tract length dependent enrichments in functional regions of 27 eukaryotes and their novel dependence on the organism DNA (G+C)% composition. BMC Genomics. 2004; 5:95.
PMC: 539357.
DOI: 10.1186/1471-2164-5-95.
View
16.
Chen Y, Parvez F, Gamble M, Islam T, Ahmed A, Argos M
. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study.... Toxicol Appl Pharmacol. 2009; 239(2):184-92.
PMC: 3904798.
DOI: 10.1016/j.taap.2009.01.010.
View
17.
Zhao J, Song Y, Liu L, Yang S, Fang B
. Effect of arsenic trioxide on the Tregs ratio and the levels of IFN-γ, IL-4, IL-17 and TGF-β1 in the peripheral blood of severe aplastic anemia patients. Medicine (Baltimore). 2020; 99(26):e20630.
PMC: 7329005.
DOI: 10.1097/MD.0000000000020630.
View
18.
Liu R, Wan Q, Zhao R, Xiao H, Cen Y, Xu X
. Risk of non-melanoma skin cancer with biological therapy in common inflammatory diseases: a systemic review and meta-analysis. Cancer Cell Int. 2021; 21(1):614.
PMC: 8607648.
DOI: 10.1186/s12935-021-02325-9.
View
19.
Zhou F, Ren J, Lu X, Ma S, Wu C
. Gene-Environment Interaction: A Variable Selection Perspective. Methods Mol Biol. 2021; 2212:191-223.
DOI: 10.1007/978-1-0716-0947-7_13.
View
20.
Halman A, Lonsdale A, Oshlack A
. Analysis of Tandem Repeats in Short-Read Sequencing Data: From Genotyping Known Pathogenic Repeats to Discovering Novel Expansions. Curr Protoc. 2024; 4(11):e70010.
PMC: 11602959.
DOI: 10.1002/cpz1.70010.
View