6.
Mohan S, Nair A, Poornima M, Raghu K
. Vanillic acid mitigates hyperinsulinemia induced ER stress mediated altered calcium homeostasis, MAMs distortion and surplus lipogenesis in HepG2 cells. Chem Biol Interact. 2023; 375:110365.
DOI: 10.1016/j.cbi.2023.110365.
View
7.
Guven B, Onay-Besikci A
. Past and present of beta arrestins: A new perspective on insulin secretion and effect. Eur J Pharmacol. 2023; 956:175952.
DOI: 10.1016/j.ejphar.2023.175952.
View
8.
Ziadlou R, Barbero A, Martin I, Wang X, Qin L, Alini M
. Anti-Inflammatory and Chondroprotective Effects of Vanillic Acid and Epimedin C in Human Osteoarthritic Chondrocytes. Biomolecules. 2020; 10(6).
PMC: 7356262.
DOI: 10.3390/biom10060932.
View
9.
Pechanova O, Varga Z, Cebova M, Giricz Z, Pacher P, Ferdinandy P
. Cardiac NO signalling in the metabolic syndrome. Br J Pharmacol. 2014; 172(6):1415-33.
PMC: 4369254.
DOI: 10.1111/bph.12960.
View
10.
Kumari S, Kamboj A, Wanjari M, Sharma A
. Nephroprotective effect of Vanillic acid in STZ-induced diabetic rats. J Diabetes Metab Disord. 2021; 20(1):571-582.
PMC: 8212202.
DOI: 10.1007/s40200-021-00782-7.
View
11.
Obydah W, Shaker G, Samir S, El Bassiony S, Abd El Moneim H
. Effect of vanillic acid and exercise training on fatty liver and insulin resistance in rats: Possible role of fibroblast growth factor 21 and autophagy. Physiol Int. 2021; .
DOI: 10.1556/2060.2021.00188.
View
12.
Zhang L, Sun W, Duan X, Duan Y, Sun H
. Promoting differentiation and lipid metabolism are the primary effects for DINP exposure on 3T3-L1 preadipocytes. Environ Pollut. 2019; 255(Pt 1):113154.
DOI: 10.1016/j.envpol.2019.113154.
View
13.
Tall A, Thomas D, Gonzalez-Cabodevilla A, Goldberg I
. Addressing dyslipidemic risk beyond LDL-cholesterol. J Clin Invest. 2022; 132(1.
PMC: 8718149.
DOI: 10.1172/JCI148559.
View
14.
Jung Y, Park J, Kim H, Sim J, Youn D, Kang J
. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro. FASEB J. 2017; 32(3):1388-1402.
DOI: 10.1096/fj.201700231RR.
View
15.
Ugwor E, Ugbaja R, James A, Dosumu O, Thomas F, Ezenandu E
. Inhibition of fat accumulation, lipid dysmetabolism, cardiac inflammation, and improved nitric oxide signalling mediate the protective effects of lycopene against cardio-metabolic disorder in obese female rats. Nutr Res. 2022; 104:140-153.
DOI: 10.1016/j.nutres.2022.05.009.
View
16.
Hudish L, Reusch J, Sussel L
. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest. 2019; 129(10):4001-4008.
PMC: 6763241.
DOI: 10.1172/JCI129188.
View
17.
Wang H, Lee D, Liu M, Portincasa P, Wang D
. Novel Insights into the Pathogenesis and Management of the Metabolic Syndrome. Pediatr Gastroenterol Hepatol Nutr. 2020; 23(3):189-230.
PMC: 7231748.
DOI: 10.5223/pghn.2020.23.3.189.
View
18.
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G
. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal. 2020; 34(1):49-98.
DOI: 10.1089/ars.2019.7955.
View
19.
colak E, Pap D
. The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. J Med Biochem. 2021; 40(1):1-9.
PMC: 7857849.
DOI: 10.5937/jomb0-24652.
View
20.
Ashokkumar N, Vinothiya K
. Protective Impact of Vanillic Acid on Lipid Profile and Lipid Metabolic Enzymes in Diabetic Hypertensive Rat Model Generated by a High-Fat Diet. Curr Drug Discov Technol. 2023; 20(3):e240223214005.
DOI: 10.2174/1570163820666230224100643.
View