6.
Sarkar S, Dadhania M, Rourke P, Desai T, Wong J
. Vascular tissue engineering: microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix. Acta Biomater. 2006; 1(1):93-100.
DOI: 10.1016/j.actbio.2004.08.003.
View
7.
Guo X, Wang X, Li X, Jiang Y, Han S, Ma L
. Endothelial Cell Migration on Poly(ε-caprolactone) Nanofibers Coated with a Nanohybrid Shish-Kebab Structure Mimicking Collagen Fibrils. Biomacromolecules. 2020; 21(3):1202-1213.
DOI: 10.1021/acs.biomac.9b01638.
View
8.
Yao T, Baker M, Moroni L
. Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering. Nanomaterials (Basel). 2020; 10(5).
PMC: 7279151.
DOI: 10.3390/nano10050887.
View
9.
Liang C, Hu Y, Wang H, Xia D, Li Q, Zhang J
. Biomimetic cardiovascular stents for in vivo re-endothelialization. Biomaterials. 2016; 103:170-182.
DOI: 10.1016/j.biomaterials.2016.06.042.
View
10.
Welt F, Rogers C
. Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol. 2002; 22(11):1769-76.
DOI: 10.1161/01.atv.0000037100.44766.5b.
View
11.
Im S, Jung Y, Kim S
. Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater. 2017; 60:3-22.
DOI: 10.1016/j.actbio.2017.07.019.
View
12.
Kruger-Genge A, Blocki A, Franke R, Jung F
. Vascular Endothelial Cell Biology: An Update. Int J Mol Sci. 2019; 20(18).
PMC: 6769656.
DOI: 10.3390/ijms20184411.
View
13.
Carpenter J, Khang D, Webster T
. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion. Nanotechnology. 2009; 19(50):505103.
DOI: 10.1088/0957-4484/19/50/505103.
View
14.
Saito A, Matsui T, Ohishi T, Sato M, Deguchi S
. Contact guidance of smooth muscle cells is associated with tension-mediated adhesion maturation. Exp Cell Res. 2014; 327(1):1-11.
DOI: 10.1016/j.yexcr.2014.05.002.
View
15.
Sales A, Holle A, Kemkemer R
. Initial contact guidance during cell spreading is contractility-independent. Soft Matter. 2017; 13(30):5158-5167.
DOI: 10.1039/c6sm02685k.
View
16.
Park J, Bauer S, Schmuki P, von der Mark K
. Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett. 2009; 9(9):3157-64.
DOI: 10.1021/nl9013502.
View
17.
Thapa A, Miller D, Webster T, Haberstroh K
. Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials. 2003; 24(17):2915-26.
DOI: 10.1016/s0142-9612(03)00123-6.
View
18.
Mi H, Jiang Y, Jing X, Enriquez E, Li H, Li Q
. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. Mater Sci Eng C Mater Biol Appl. 2019; 98:241-249.
DOI: 10.1016/j.msec.2018.12.126.
View
19.
Inoue T, Croce K, Morooka T, Sakuma M, Node K, Simon D
. Vascular inflammation and repair: implications for re-endothelialization, restenosis, and stent thrombosis. JACC Cardiovasc Interv. 2011; 4(10):1057-66.
PMC: 3341937.
DOI: 10.1016/j.jcin.2011.05.025.
View
20.
Thakar R, Cheng Q, Patel S, Chu J, Nasir M, Liepmann D
. Cell-shape regulation of smooth muscle cell proliferation. Biophys J. 2009; 96(8):3423-32.
PMC: 2718294.
DOI: 10.1016/j.bpj.2008.11.074.
View