6.
Geesink G, Schreutelkamp F, Frankhuizen R, Vedder H, Faber N, Kranen R
. Prediction of pork quality attributes from near infrared reflectance spectra. Meat Sci. 2011; 65(1):661-8.
DOI: 10.1016/S0309-1740(02)00269-3.
View
7.
Prieto N, Lopez-Campos O, Aalhus J, Dugan M, Juarez M, Uttaro B
. Use of near infrared spectroscopy for estimating meat chemical composition, quality traits and fatty acid content from cattle fed sunflower or flaxseed. Meat Sci. 2014; 98(2):279-88.
DOI: 10.1016/j.meatsci.2014.06.005.
View
8.
Prieto N, Pawluczyk O, Dugan M, Aalhus J
. A Review of the Principles and Applications of Near-Infrared Spectroscopy to Characterize Meat, Fat, and Meat Products. Appl Spectrosc. 2017; 71(7):1403-1426.
DOI: 10.1177/0003702817709299.
View
9.
Pogorzelska-Przybylek P, Nogalski Z, Sobczuk-Szul M, Momot M
. The effect of gender status on the growth performance, carcass and meat quality traits of young crossbred Holstein-Friesian×Limousin cattle. Anim Biosci. 2020; 34(5):914-921.
PMC: 8100472.
DOI: 10.5713/ajas.20.0085.
View
10.
Prieto N, Roehe R, Lavin P, Batten G, Andres S
. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci. 2010; 83(2):175-86.
DOI: 10.1016/j.meatsci.2009.04.016.
View
11.
Shackelford S, Wheeler T, Koohmaraie M
. On-line classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy. Meat Sci. 2011; 69(3):409-15.
DOI: 10.1016/j.meatsci.2004.08.011.
View
12.
Park S, Beak S, Jung D, Kim S, Jeong I, Piao M
. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle - A review. Asian-Australas J Anim Sci. 2018; 31(7):1043-1061.
PMC: 6039335.
DOI: 10.5713/ajas.18.0310.
View
13.
Downey G, Beauchene D
. Discrimination between fresh and frozen-then-thawed beef m. longissimus dorsi by combined visible-near infrared reflectance spectroscopy: A feasibility study. Meat Sci. 2011; 45(3):353-63.
DOI: 10.1016/s0309-1740(96)00127-1.
View
14.
Kamruzzaman M
. Optical sensing as analytical tools for meat tenderness measurements - A review. Meat Sci. 2022; 195:109007.
DOI: 10.1016/j.meatsci.2022.109007.
View
15.
Ballin N, Vogensen F, Karlsson A
. Species determination - Can we detect and quantify meat adulteration?. Meat Sci. 2010; 83(2):165-74.
DOI: 10.1016/j.meatsci.2009.06.003.
View
16.
Dixit Y, Hitchman S, Hicks T, Lim P, Wong C, Holibar L
. Non-invasive spectroscopic and imaging systems for prediction of beef quality in a meat processing pilot plant. Meat Sci. 2020; 181:108410.
DOI: 10.1016/j.meatsci.2020.108410.
View
17.
Bonin M, da Luz E Silva S, Bunger L, Ross D, Feijo G, da Costa Gomes R
. Predicting the shear value and intramuscular fat in meat from Nellore cattle using Vis-NIR spectroscopy. Meat Sci. 2020; 163:108077.
DOI: 10.1016/j.meatsci.2020.108077.
View
18.
Kapper C, Klont R, Verdonk J, Urlings H
. Prediction of pork quality with near infrared spectroscopy (NIRS): 1. Feasibility and robustness of NIRS measurements at laboratory scale. Meat Sci. 2012; 91(3):294-9.
DOI: 10.1016/j.meatsci.2012.02.005.
View
19.
Balage J, da Luz E Silva S, Gomide C, Bonin M, Figueira A
. Predicting pork quality using Vis/NIR spectroscopy. Meat Sci. 2015; 108:37-43.
DOI: 10.1016/j.meatsci.2015.04.018.
View
20.
Li Y, Wang H, Yang Z, Wang X, Wang W, Hui T
. Rapid Non-Destructive Detection Technology in the Field of Meat Tenderness: A Review. Foods. 2024; 13(10).
PMC: 11120403.
DOI: 10.3390/foods13101512.
View