In Silico Prediction of Maize MicroRNA As a Xanthine Oxidase Inhibitor: A New Approach to Treating Hyperuricemia Patients
Overview
Authors
Affiliations
Introduction: Hyperuricemia is characterized by increased uric acid (UA) in the body. The ability to block xanthine oxidase (XO) is a useful way to check how different bioactive molecules affect hyperuricemia. Previous reports showed the significant effect of corn against hyperuricemia disorder with its anti-XO activity. The identification of stable Zea mays miRNA (zma-miR) in humans has opened up a new avenue for speculation about its part in regulating novel human gene targets.
Aims: The aim of this study was to investigate the prospects of zma-miRs in XO gene regulation, the possible mechanism, and the interaction analysis of the zma-miR-XO mRNA transcript.
Method: Significant features of miRNA-mRNA interaction were revealed using two popular miRNA target prediction software-intaRNA (version 3.3.1) and RNA hybrid (version 2.2.1) Results: Only 12 zma-miR-156 variants, out of the 325 zma-miR's sequences reported in the miRNA database, efficiently interact with the 3'UTR of the XO gene. Characteristics of miRNA-mRNA interaction were as follows: the positioning of zma-miR-156 variants shows that they all have the same 11-mer binding sites, guanine (G), and uracil (U) loops at the 13th and 14th positions from the 5' end, and no G: U wobble pairing. These factors are related to the inhibition of functional mRNA expression. Additionally, the zma-miR-156 variants exhibit a single-base variation (SBV), which leads to distinct yet highly effective alterations in their interaction pattern with the XO mRNA transcript and the corresponding free energy values.
Conclusion: Therefore, we propose that zma-miR-156 variants may be a promising new bioactive compound against hyperuricemia and related diseases.