6.
Karantanos T, Corn P, Thompson T
. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene. 2013; 32(49):5501-11.
PMC: 3908870.
DOI: 10.1038/onc.2013.206.
View
7.
Hou J, Hsu J, Hung M
. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity. Mol Cell. 2021; 81(22):4579-4590.
PMC: 8604761.
DOI: 10.1016/j.molcel.2021.09.003.
View
8.
Thurber G, Weissleder R
. Quantitating antibody uptake in vivo: conditional dependence on antigen expression levels. Mol Imaging Biol. 2010; 13(4):623-32.
PMC: 3000888.
DOI: 10.1007/s11307-010-0397-7.
View
9.
Wolf I, Gratzke C, Wolf P
. Prostate Cancer Stem Cells: Clinical Aspects and Targeted Therapies. Front Oncol. 2022; 12:935715.
PMC: 9304860.
DOI: 10.3389/fonc.2022.935715.
View
10.
Hsu M, Okamura S, De Magalhaes Filho C, Bergeron D, Rodriguez A, West M
. Cancer-targeted photoimmunotherapy induces antitumor immunity and can be augmented by anti-PD-1 therapy for durable anticancer responses in an immunologically active murine tumor model. Cancer Immunol Immunother. 2022; 72(1):151-168.
DOI: 10.1007/s00262-022-03239-9.
View
11.
Lee Y, Jin J, Cheng C, Huang C, Song J, Huang M
. Targeting constitutively activated β1 integrins inhibits prostate cancer metastasis. Mol Cancer Res. 2013; 11(4):405-17.
PMC: 3631285.
DOI: 10.1158/1541-7786.MCR-12-0551.
View
12.
Wolf I, Storz J, Schultze-Seemann S, Esser P, Martin S, Lauw S
. A new silicon phthalocyanine dye induces pyroptosis in prostate cancer cells during photoimmunotherapy. Bioact Mater. 2024; 41:537-552.
PMC: 11378935.
DOI: 10.1016/j.bioactmat.2024.07.025.
View
13.
Kato T, Okada R, Furusawa A, Inagaki F, Wakiyama H, Furumoto H
. Simultaneously Combined Cancer Cell- and CTLA4-Targeted NIR-PIT Causes a Synergistic Treatment Effect in Syngeneic Mouse Models. Mol Cancer Ther. 2021; 20(11):2262-2273.
PMC: 10214494.
DOI: 10.1158/1535-7163.MCT-21-0470.
View
14.
Steinwand M, Droste P, Frenzel A, Hust M, Dubel S, Schirrmann T
. The influence of antibody fragment format on phage display based affinity maturation of IgG. MAbs. 2013; 6(1):204-18.
PMC: 3929444.
DOI: 10.4161/mabs.27227.
View
15.
Botchkina G, Zuniga E, Rowehl R, Park R, Bhalla R, Bialkowska A
. Prostate cancer stem cell-targeted efficacy of a new-generation taxoid, SBT-1214 and novel polyenolic zinc-binding curcuminoid, CMC2.24. PLoS One. 2013; 8(9):e69884.
PMC: 3782470.
DOI: 10.1371/journal.pone.0069884.
View
16.
Proietto M, Crippa M, Damiani C, Pasquale V, Sacco E, Vanoni M
. Tumor heterogeneity: preclinical models, emerging technologies, and future applications. Front Oncol. 2023; 13:1164535.
PMC: 10175698.
DOI: 10.3389/fonc.2023.1164535.
View
17.
Ward J, Moul J
. Rising prostate-specific antigen after primary prostate cancer therapy. Nat Clin Pract Urol. 2006; 2(4):174-82.
DOI: 10.1038/ncpuro0145.
View
18.
Mohiuddin T, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I
. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci. 2023; 24(3).
PMC: 9916513.
DOI: 10.3390/ijms24032655.
View
19.
James N, Tannock I, Ndow J, Feng F, Gillessen S, Ali S
. The Lancet Commission on prostate cancer: planning for the surge in cases. Lancet. 2024; 403(10437):1683-1722.
PMC: 7617369.
DOI: 10.1016/S0140-6736(24)00651-2.
View
20.
Ge R, Wang Z, Cheng L
. Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance. NPJ Precis Oncol. 2022; 6(1):31.
PMC: 9068628.
DOI: 10.1038/s41698-022-00272-w.
View