6.
Li N, Wang B
. Suppressive effects of umbilical cord mesenchymal stem cell-derived exosomal miR-15a-5p on the progression of cholangiocarcinoma by inhibiting CHEK1 expression. Cell Death Discov. 2022; 8(1):205.
PMC: 9012823.
DOI: 10.1038/s41420-022-00932-7.
View
7.
Chraa D, Naim A, Olive D, Badou A
. T lymphocyte subsets in cancer immunity: Friends or foes. J Leukoc Biol. 2018; 105(2):243-255.
DOI: 10.1002/JLB.MR0318-097R.
View
8.
Jing C, Fu Y, Yi Y, Zhang M, Zheng S, Huang J
. HHLA2 in intrahepatic cholangiocarcinoma: an immune checkpoint with prognostic significance and wider expression compared with PD-L1. J Immunother Cancer. 2019; 7(1):77.
PMC: 6421676.
DOI: 10.1186/s40425-019-0554-8.
View
9.
Korbecki J, Kupnicka P, Chlubek M, Goracy J, Gutowska I, Baranowska-Bosiacka I
. CXCR2 Receptor: Regulation of Expression, Signal Transduction, and Involvement in Cancer. Int J Mol Sci. 2022; 23(4).
PMC: 8878198.
DOI: 10.3390/ijms23042168.
View
10.
Ye W, Olsson-Brown A, Watson R, Cheung V, Morgan R, Nassiri I
. Checkpoint-blocker-induced autoimmunity is associated with favourable outcome in metastatic melanoma and distinct T-cell expression profiles. Br J Cancer. 2021; 124(10):1661-1669.
PMC: 8110747.
DOI: 10.1038/s41416-021-01310-3.
View
11.
Thapa B, Kato S, Nishizaki D, Miyashita H, Lee S, Nesline M
. OX40/OX40 ligand and its role in precision immune oncology. Cancer Metastasis Rev. 2024; 43(3):1001-1013.
PMC: 11300540.
DOI: 10.1007/s10555-024-10184-9.
View
12.
Guo Y, Xie Y, Gao M, Zhao Y, Franco F, Wenes M
. Metabolic reprogramming of terminally exhausted CD8 T cells by IL-10 enhances anti-tumor immunity. Nat Immunol. 2021; 22(6):746-756.
PMC: 7610876.
DOI: 10.1038/s41590-021-00940-2.
View
13.
Kitano Y, Okabe H, Yamashita Y, Nakagawa S, Saito Y, Umezaki N
. Tumour-infiltrating inflammatory and immune cells in patients with extrahepatic cholangiocarcinoma. Br J Cancer. 2017; 118(2):171-180.
PMC: 5785749.
DOI: 10.1038/bjc.2017.401.
View
14.
Kidanemariam S, Gu J, Yoon J, Challapalli J, Fruh V, Sax A
. Cholangiocarcinoma: Epidemiology and Imaging-Based Review. R I Med J (2013). 2024; 107(5):43-48.
View
15.
Zhang G, Zheng G, Zhang H, Qiu L
. MUC1 induces the accumulation of Foxp3 Treg cells in the tumor microenvironment to promote the growth and metastasis of cholangiocarcinoma through the EGFR/PI3K/Akt signaling pathway. Int Immunopharmacol. 2023; 118:110091.
DOI: 10.1016/j.intimp.2023.110091.
View
16.
Liu Y, Wang Y, Yang Y, Weng L, Wu Q, Zhang J
. Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther. 2023; 8(1):104.
PMC: 9990587.
DOI: 10.1038/s41392-023-01365-z.
View
17.
Fukuda Y, Asaoka T, Eguchi H, Yokota Y, Kubo M, Kinoshita M
. Endogenous CXCL9 affects prognosis by regulating tumor-infiltrating natural killer cells in intrahepatic cholangiocarcinoma. Cancer Sci. 2019; 111(2):323-333.
PMC: 7004525.
DOI: 10.1111/cas.14267.
View
18.
Carapeto F, Bozorgui B, Shroff R, Chagani S, Soto L, Foo W
. The immunogenomic landscape of resected intrahepatic cholangiocarcinoma. Hepatology. 2021; 75(2):297-308.
PMC: 8766948.
DOI: 10.1002/hep.32150.
View
19.
Fu Z, Wang S, Li J, Zhang Y, Li H, Li G
. Biological role of GITR/GITRL in attributes and immune responses of macrophage. J Leukoc Biol. 2019; 107(2):309-321.
DOI: 10.1002/JLB.3A0919-387RR.
View
20.
Fabris L, Sato K, Alpini G, Strazzabosco M
. The Tumor Microenvironment in Cholangiocarcinoma Progression. Hepatology. 2020; 73 Suppl 1:75-85.
PMC: 7714713.
DOI: 10.1002/hep.31410.
View