6.
Wright G
. Molecular mechanisms of antibiotic resistance. Chem Commun (Camb). 2011; 47(14):4055-61.
DOI: 10.1039/c0cc05111j.
View
7.
Sun C, Wang Q, Brubaker J, Wright P, Lerner C, Noson K
. A robust platform for the synthesis of new tetracycline antibiotics. J Am Chem Soc. 2008; 130(52):17913-27.
PMC: 2681267.
DOI: 10.1021/ja806629e.
View
8.
Abouelhassan Y, Garrison A, Yang H, Chavez-Riveros A, Burch G, Huigens 3rd R
. Recent Progress in Natural-Product-Inspired Programs Aimed To Address Antibiotic Resistance and Tolerance. J Med Chem. 2019; 62(17):7618-7642.
PMC: 6742553.
DOI: 10.1021/acs.jmedchem.9b00370.
View
9.
Hogan P, Chen C, Mulvihill K, Lawrence J, Moorhead E, Rickmeier J
. Large-scale preparation of key building blocks for the manufacture of fully synthetic macrolide antibiotics. J Antibiot (Tokyo). 2017; 71(2):318-325.
DOI: 10.1038/ja.2017.116.
View
10.
Okano A, Nakayama A, Schammel A, Boger D
. Total synthesis of [Ψ[C(═NH)NH]Tpg(4)]vancomycin and its (4-chlorobiphenyl)methyl derivative: impact of peripheral modifications on vancomycin analogues redesigned for dual D-Ala-D-Ala and D-Ala-D-Lac binding. J Am Chem Soc. 2014; 136(39):13522-5.
PMC: 4183650.
DOI: 10.1021/ja507009a.
View
11.
Jennings M, Ator L, Paniak T, Minbiole K, Wuest W
. Biofilm-eradicating properties of quaternary ammonium amphiphiles: simple mimics of antimicrobial peptides. Chembiochem. 2014; 15(15):2211-5.
DOI: 10.1002/cbic.201402254.
View
12.
Garrison A, Abouelhassan Y, Kallifidas D, Tan H, Kim Y, Jin S
. An Efficient Buchwald-Hartwig/Reductive Cyclization for the Scaffold Diversification of Halogenated Phenazines: Potent Antibacterial Targeting, Biofilm Eradication, and Prodrug Exploration. J Med Chem. 2018; 61(9):3962-3983.
DOI: 10.1021/acs.jmedchem.7b01903.
View
13.
Lluka T, Stokes J
. Antibiotic discovery in the artificial intelligence era. Ann N Y Acad Sci. 2022; 1519(1):74-93.
DOI: 10.1111/nyas.14930.
View
14.
Deb C, Lee C, Dubey V, Daniel J, Abomoelak B, Sirakova T
. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One. 2009; 4(6):e6077.
PMC: 2698117.
DOI: 10.1371/journal.pone.0006077.
View
15.
Lewis K
. The Science of Antibiotic Discovery. Cell. 2020; 181(1):29-45.
DOI: 10.1016/j.cell.2020.02.056.
View
16.
Darby E, Trampari E, Siasat P, Gaya M, Alav I, Webber M
. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol. 2022; 21(5):280-295.
DOI: 10.1038/s41579-022-00820-y.
View
17.
Xie J, Okano A, Pierce J, James R, Stamm S, Crane C
. Total synthesis of [Ψ[C(═S)NH]Tpg4]vancomycin aglycon, [Ψ[C(═NH)NH]Tpg4]vancomycin aglycon, and related key compounds: reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding. J Am Chem Soc. 2011; 134(2):1284-97.
PMC: 3262083.
DOI: 10.1021/ja209937s.
View
18.
Munoz K, Hergenrother P
. Facilitating Compound Entry as a Means to Discover Antibiotics for Gram-Negative Bacteria. Acc Chem Res. 2021; 54(6):1322-1333.
PMC: 7969460.
DOI: 10.1021/acs.accounts.0c00895.
View
19.
Niu H, Gu J, Zhang Y
. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther. 2024; 9(1):174.
PMC: 11252167.
DOI: 10.1038/s41392-024-01866-5.
View
20.
Richter M, Hergenrother P
. The challenge of converting Gram-positive-only compounds into broad-spectrum antibiotics. Ann N Y Acad Sci. 2018; 1435(1):18-38.
PMC: 6093809.
DOI: 10.1111/nyas.13598.
View