Measuring Diagnostic Quality: The Capacity of Routinely Collected Data and Applications to Chronic Respiratory Disease
Overview
Overview
Authors
Affiliations
Affiliations
Soon will be listed here.
References
1.
Nicholls S, Langan S, Benchimol E
. Routinely collected data: the importance of high-quality diagnostic coding to research. CMAJ. 2017; 189(33):E1054-E1055.
PMC: 5566604.
DOI: 10.1503/cmaj.170807.
View
2.
Burstin H, Cosby K
. Measuring Performance of the Diagnostic Process. JAMA. 2022; 328(2):143-144.
DOI: 10.1001/jama.2022.10166.
View
3.
von Lucadou M, Ganslandt T, Prokosch H, Toddenroth D
. Feasibility analysis of conducting observational studies with the electronic health record. BMC Med Inform Decis Mak. 2019; 19(1):202.
PMC: 6819452.
DOI: 10.1186/s12911-019-0939-0.
View
4.
Tang K, Lucyk K, Quan H
. Coder perspectives on physician-related barriers to producing high-quality administrative data: a qualitative study. CMAJ Open. 2017; 5(3):E617-E622.
PMC: 5621953.
DOI: 10.9778/cmajo.20170036.
View
5.
Lenoir K, Wagenknecht L, Divers J, Casanova R, Dabelea D, Saydah S
. Determining diagnosis date of diabetes using structured electronic health record (EHR) data: the SEARCH for diabetes in youth study. BMC Med Res Methodol. 2021; 21(1):210.
PMC: 8502379.
DOI: 10.1186/s12874-021-01394-8.
View