6.
Du K, He M, Zhao D, Wang Y, Ma C, Liang H
. Mechanism of cell death pathways in status epilepticus and related therapeutic agents. Biomed Pharmacother. 2022; 149:112875.
DOI: 10.1016/j.biopha.2022.112875.
View
7.
Shi X, Liu R, Wang Y, Yu T, Zhang K, Zhang C
. Inhibiting acid-sensing ion channel exerts neuroprotective effects in experimental epilepsy via suppressing ferroptosis. CNS Neurosci Ther. 2024; 30(2):e14596.
PMC: 10867794.
DOI: 10.1111/cns.14596.
View
8.
Tong X, Tong Y, Zheng J, Shi R, Liang H, Li M
. TRPM7 contributes to pyroptosis and its involvement in status epilepticus. J Neuroinflammation. 2024; 21(1):315.
PMC: 11608501.
DOI: 10.1186/s12974-024-03292-4.
View
9.
Ngadimon I, Seth E, Shaikh M
. Exploring the Neuroinflammatory Pathway in Epilepsy and Cognitive Impairment: Role of HMGB1 and Translational Challenges. Front Biosci (Landmark Ed). 2024; 29(6):229.
DOI: 10.31083/j.fbl2906229.
View
10.
Levira F, Thurman D, Sander J, Hauser W, Hesdorffer D, Masanja H
. Premature mortality of epilepsy in low- and middle-income countries: A systematic review from the Mortality Task Force of the International League Against Epilepsy. Epilepsia. 2016; 58(1):6-16.
PMC: 7012644.
DOI: 10.1111/epi.13603.
View
11.
Lu Y, Lin M, Ou S, Sun L, Qian K, Kuang H
. ameliorate epileptogenesis, cognitive impairment, and neuroinflammation in a pentylenetetrazole-induced kindling mouse model. Front Pharmacol. 2024; 15:1336122.
PMC: 10884767.
DOI: 10.3389/fphar.2024.1336122.
View
12.
Henshall D, Murphy B
. Modulators of neuronal cell death in epilepsy. Curr Opin Pharmacol. 2007; 8(1):75-81.
DOI: 10.1016/j.coph.2007.07.005.
View
13.
Secco M
. Epilepsy: A public health priority. Epilepsy Behav. 2020; 103(Pt A):106829.
DOI: 10.1016/j.yebeh.2019.106829.
View
14.
Wu G, Liu J, Li S, Gao W, Qiu M, Yang C
. Glycyrrhizic acid protects juvenile epileptic rats against hippocampal damage through activation of Sirtuin3. Brain Res Bull. 2020; 164:98-106.
DOI: 10.1016/j.brainresbull.2020.08.008.
View
15.
Shekh-Ahmad T, Kovac S, Abramov A, Walker M
. Reactive oxygen species in status epilepticus. Epilepsy Behav. 2019; 101(Pt B):106410.
DOI: 10.1016/j.yebeh.2019.07.011.
View
16.
Xue J, Suarez J, Minaai M, Li S, Gaudino G, Pass H
. HMGB1 as a therapeutic target in disease. J Cell Physiol. 2020; 236(5):3406-3419.
PMC: 8104204.
DOI: 10.1002/jcp.30125.
View
17.
Yu M, Huang H, Dong S, Sha H, Wei W, Liu C
. High mobility group box-1 mediates hippocampal inflammation and contributes to cognitive deficits in high-fat high-fructose diet-induced obese rats. Brain Behav Immun. 2019; 82:167-177.
DOI: 10.1016/j.bbi.2019.08.007.
View
18.
Li Y, Yao N, Zhang T, Guo F, Niu X, Wu Z
. Ability of Post-treatment Glycyrrhizic Acid to Mitigate Cerebral Ischemia/Reperfusion Injury in Diabetic Mice. Med Sci Monit. 2020; 26:e926551.
PMC: 7531204.
DOI: 10.12659/MSM.926551.
View
19.
Gendy A, El-Sadek H, Amin M, Ahmed K, El-Sayed M, El-Haddad A
. Glycyrrhizin prevents 3-nitropropionic acid-induced neurotoxicity by downregulating HMGB1/TLR4/NF-κB p65 signaling, and attenuating oxidative stress, inflammation, and apoptosis in rats. Life Sci. 2022; 314:121317.
DOI: 10.1016/j.lfs.2022.121317.
View
20.
Janmohamed M, Brodie M, Kwan P
. Pharmacoresistance - Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology. 2019; 168:107790.
DOI: 10.1016/j.neuropharm.2019.107790.
View