» Articles » PMID: 39834616

Imperatorin's Effect on Myocardial Infarction Based on Network Pharmacology and Molecular Docking

Overview
Journal Cardiovasc Ther
Publisher Hindawi
Date 2025 Jan 21
PMID 39834616
Authors
Affiliations
Soon will be listed here.
Abstract

Myocardial infarction (MI), a severe cardiovascular disease, is the result of insufficient blood supply to the myocardium. Despite the improvements of conventional therapies, new approaches are needed to improve the outcome post-MI. Imperatorin is a natural compound with multiple pharmacological properties and potential cardioprotective effects. Therefore, this work investigated imperatorin's therapeutic effects and its mechanism of action in an MI mouse model. : Network pharmacology, molecular docking, and experimental validation were performed for exploring the pharmacokinetic properties, therapeutic effects, and molecular targets of imperatorin in MI. Permanent ligation of the left anterior descending artery was performed in male C57BL/6 mice to induce MI before treatment with imperatorin once per day for 1 week. Echocardiography, heart histology, RNA sequencing, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) as well as western blotting were carried out for evaluating cardiac function and structure, as well as gene and protein expression. : Imperatorin significantly improved cardiac function, preserved cardiac structure, attenuated cardiac remodeling and fibrosis, and reduced cardiomyocyte apoptosis in MI mice. Eight differentially expressed genes overlapping with key target genes were found, two upregulated and six downregulated. A key target in signaling pathways associated with imperatorin effect in MI was angiotensin-converting enzyme (ACE). Imperatorin inhibited ACE-angiotensin II (Ang II)-angiotensin II Type 1 receptor (AT1R) axis in MI mice. : Imperatorin attenuated MI by inhibiting the ACE-Ang II-AT1R axis. Thus, imperatorin might be considered a potential therapeutic agent to cure MI.

References
1.
Zhang Y, Wang Q, Zhan Y, Duan H, Cao Y, He L . Role of store-operated calcium entry in imperatorin-induced vasodilatation of rat small mesenteric artery. Eur J Pharmacol. 2010; 647(1-3):126-31. DOI: 10.1016/j.ejphar.2010.08.010. View

2.
Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X . PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017; 45(W1):W356-W360. PMC: 5793840. DOI: 10.1093/nar/gkx374. View

3.
Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C . jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014; 15:293. PMC: 4261873. DOI: 10.1186/1471-2105-15-293. View

4.
Morris G, Huey R, Lindstrom W, Sanner M, Belew R, Goodsell D . AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16):2785-91. PMC: 2760638. DOI: 10.1002/jcc.21256. View

5.
Lipinski C, Lombardo F, Dominy B, Feeney P . Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; 46(1-3):3-26. DOI: 10.1016/s0169-409x(00)00129-0. View