6.
Deierlein A, Teitelbaum S, Windham G, Pinney S, Galvez M, Caldwell K
. Lead exposure during childhood and subsequent anthropometry through adolescence in girls. Environ Int. 2018; 122:310-315.
PMC: 6366327.
DOI: 10.1016/j.envint.2018.11.031.
View
7.
Devaux S, Adrian M, Laurant P, Berthelot A, Quignard-Boulange A
. Dietary magnesium intake alters age-related changes in rat adipose tissue cellularity. Magnes Res. 2017; 29(4):175-183.
DOI: 10.1684/mrh.2016.0406.
View
8.
Zhao Z, Qi S, Zhou J, Ren Y, Zheng K, Zhang J
. Insight into the role of heterogeneous Fenton-like catalyst FeCo-γ-AlO with dual electron-rich centers for Ni-EDTA removal. Chemosphere. 2024; 346:140538.
DOI: 10.1016/j.chemosphere.2023.140538.
View
9.
Duc H, Oh H, Kim M
. The Effect of Mixture of Heavy Metals on Obesity in Individuals ≥50 Years of Age. Biol Trace Elem Res. 2021; 200(8):3554-3571.
DOI: 10.1007/s12011-021-02972-z.
View
10.
Eisenbarth S, Colegio O, OConnor W, Sutterwala F, Flavell R
. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008; 453(7198):1122-6.
PMC: 4804622.
DOI: 10.1038/nature06939.
View
11.
Meng X, Meng X, He Z, Yuan Y, Fan Y, Yin L
. Selenium Deficiency Can Promote the Expression of VEGF and Inflammatory Factors in Cartilage Differentiation and Mediates Cartilage Injury. Biol Trace Elem Res. 2023; 202(9):4170-4179.
DOI: 10.1007/s12011-023-04003-5.
View
12.
Farkhondeh T, Samarghandian S, Azimi-Nezhad M
. The role of arsenic in obesity and diabetes. J Cell Physiol. 2019; 234(8):12516-12529.
DOI: 10.1002/jcp.28112.
View
13.
Farr O, Gavrieli A, Mantzoros C
. Leptin applications in 2015: what have we learned about leptin and obesity?. Curr Opin Endocrinol Diabetes Obes. 2015; 22(5):353-9.
PMC: 4610373.
DOI: 10.1097/MED.0000000000000184.
View
14.
Galvan-Portillo M, Torres-Sanchez L, Hernandez-Ramirez R, Anaya-Loyola M
. [Validity and reproducibility of a food frequency questionnaire to estimate folate intake in a Mexican population]. Salud Publica Mex. 2011; 53(3):237-46.
DOI: 10.1590/s0036-36342011000300008.
View
15.
Gonzalez-Casanova J, Pertuz-Cruz S, Caicedo-Ortega N, Rojas-Gomez D
. Adipogenesis Regulation and Endocrine Disruptors: Emerging Insights in Obesity. Biomed Res Int. 2020; 2020:7453786.
PMC: 7049431.
DOI: 10.1155/2020/7453786.
View
16.
Haines D, Saravanabhavan G, Werry K, Khoury C
. An overview of human biomonitoring of environmental chemicals in the Canadian Health Measures Survey: 2007-2019. Int J Hyg Environ Health. 2016; 220(2 Pt A):13-28.
DOI: 10.1016/j.ijheh.2016.08.002.
View
17.
Hernandez-Mendoza H, Alvarez-Loredo H, Romero-Guzman E, Gaytan-Hernandez D, Chang-Rueda C, Martinez-Navarro I
. Relationship Between Serum Levels of Arsenic, Cadmium, and Mercury and Body Mass Index and Fasting Plasma Glucose in a Mexican Adult Population. Biol Trace Elem Res. 2022; 200(12):4916-4923.
PMC: 8801291.
DOI: 10.1007/s12011-021-03081-7.
View
18.
Holden B, Guice E
. An investigation of normal urine with a creatinine concentration under the cutoff of 20 mg/dL for specimen validity testing in a toxicology laboratory. J Forensic Sci. 2014; 59(3):806-10.
DOI: 10.1111/1556-4029.12386.
View
19.
Gao L, Zhang W, Liu Q, Lin X, Huang Y, Zhang X
. Machine learning based on the graph convolutional self-organizing map method increases the accuracy of pollution source identification: A case study of trace metal(loid)s in soils of Jiangmen City, south China. Ecotoxicol Environ Saf. 2023; 250:114467.
DOI: 10.1016/j.ecoenv.2022.114467.
View
20.
Kupsco A, Kioumourtzoglou M, Just A, Amarasiriwardena C, Estrada-Gutierrez G, Cantoral A
. Prenatal Metal Concentrations and Childhood Cardiometabolic Risk Using Bayesian Kernel Machine Regression to Assess Mixture and Interaction Effects. Epidemiology. 2019; 30(2):263-273.
PMC: 6402346.
DOI: 10.1097/EDE.0000000000000962.
View