6.
Webb-Robertson B, Wiberg H, Matzke M, Brown J, Wang J, McDermott J
. Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics. J Proteome Res. 2015; 14(5):1993-2001.
PMC: 4776766.
DOI: 10.1021/pr501138h.
View
7.
Vehik K, Fiske S, Logan C, Agardh D, Cilio C, Hagopian W
. Methods, quality control and specimen management in an international multicentre investigation of type 1 diabetes: TEDDY. Diabetes Metab Res Rev. 2013; 29(7):557-67.
PMC: 3992860.
DOI: 10.1002/dmrr.2427.
View
8.
Stratton K, Webb-Robertson B, McCue L, Stanfill B, Claborne D, Godinez I
. pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data. J Proteome Res. 2019; 18(3):1418-1425.
PMC: 6750869.
DOI: 10.1021/acs.jproteome.8b00760.
View
9.
Pino L, Searle B, Bollinger J, Nunn B, MacLean B, MacCoss M
. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev. 2017; 39(3):229-244.
PMC: 5799042.
DOI: 10.1002/mas.21540.
View
10.
Vehik K, Bonifacio E, Lernmark A, Yu L, Williams A, Schatz D
. Hierarchical Order of Distinct Autoantibody Spreading and Progression to Type 1 Diabetes in the TEDDY Study. Diabetes Care. 2020; 43(9):2066-2073.
PMC: 7440899.
DOI: 10.2337/dc19-2547.
View
11.
Piehowski P, Petyuk V, Orton D, Xie F, Moore R, Ramirez-Restrepo M
. Sources of technical variability in quantitative LC-MS proteomics: human brain tissue sample analysis. J Proteome Res. 2013; 12(5):2128-37.
PMC: 3695475.
DOI: 10.1021/pr301146m.
View
12.
Stacklies W, Redestig H, Scholz M, Walther D, Selbig J
. pcaMethods--a bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007; 23(9):1164-7.
DOI: 10.1093/bioinformatics/btm069.
View
13.
Zhang Y, Parmigiani G, Johnson W
. : batch effect adjustment for RNA-seq count data. NAR Genom Bioinform. 2020; 2(3):lqaa078.
PMC: 7518324.
DOI: 10.1093/nargab/lqaa078.
View
14.
Ziegler A, Rewers M, Simell O, Simell T, Lempainen J, Steck A
. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013; 309(23):2473-9.
PMC: 4878912.
DOI: 10.1001/jama.2013.6285.
View
15.
Rewers M, Hyoty H, Lernmark A, Hagopian W, She J, Schatz D
. The Environmental Determinants of Diabetes in the Young (TEDDY) Study: 2018 Update. Curr Diab Rep. 2018; 18(12):136.
PMC: 6415767.
DOI: 10.1007/s11892-018-1113-2.
View
16.
Nakayasu E, Bramer L, Ansong C, Schepmoes A, Fillmore T, Gritsenko M
. Plasma protein biomarkers predict the development of persistent autoantibodies and type 1 diabetes 6 months prior to the onset of autoimmunity. Cell Rep Med. 2023; 4(7):101093.
PMC: 10394168.
DOI: 10.1016/j.xcrm.2023.101093.
View
17.
Dunn W, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N
. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011; 6(7):1060-83.
DOI: 10.1038/nprot.2011.335.
View
18.
Degnan D, Stratton K, Richardson R, Claborne D, Martin E, Johnson N
. : A Quality Control, Visualization, and Statistics Pipeline for Multiple Omics Datatypes. J Proteome Res. 2023; 22(2):570-576.
DOI: 10.1021/acs.jproteome.2c00610.
View
19.
Leach D, Stratton K, Irvahn J, Richardson R, Webb-Robertson B, Bramer L
. malbacR: A Package for Standardized Implementation of Batch Correction Methods for Omics Data. Anal Chem. 2023; 95(33):12195-12199.
DOI: 10.1021/acs.analchem.3c01289.
View
20.
Vehik K, Cuthbertson D, Boulware D, Beam C, Rodriguez H, Legault L
. Performance of HbA1c as an early diagnostic indicator of type 1 diabetes in children and youth. Diabetes Care. 2012; 35(9):1821-5.
PMC: 3425003.
DOI: 10.2337/dc12-0111.
View