6.
Mehra N, Palakurthi S
. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov Today. 2015; 21(4):585-97.
DOI: 10.1016/j.drudis.2015.11.011.
View
7.
Tran S, DeGiovanni P, Piel B, Rai P
. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017; 6(1):44.
PMC: 5725398.
DOI: 10.1186/s40169-017-0175-0.
View
8.
Xiong K, Fan Q, Wu T, Shi H, Chen L, Yan M
. Enhanced bovine serum albumin absorption on the N-hydroxysuccinimide activated graphene oxide and its corresponding cell affinity. Mater Sci Eng C Mater Biol Appl. 2017; 81:386-392.
DOI: 10.1016/j.msec.2017.08.044.
View
9.
Patel V, Shah J, Gupta A
. Design and In-silico study of bioimaging fluorescence Graphene quantum dot-Bovine serum albumin complex synthesized by diimide-activated amidation. Comput Biol Chem. 2021; 93:107543.
DOI: 10.1016/j.compbiolchem.2021.107543.
View
10.
Fan Y, Su F, Li K, Ke C, Yan Y
. Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production. Sci Rep. 2017; 7:45643.
PMC: 5372472.
DOI: 10.1038/srep45643.
View
11.
Gawali S, Shelar S, Gupta J, Barick K, Hassan P
. Immobilization of protein on FeO nanoparticles for magnetic hyperthermia application. Int J Biol Macromol. 2020; 166:851-860.
DOI: 10.1016/j.ijbiomac.2020.10.241.
View
12.
Suo N, Wang M, Jin Y, Ding J, Gao X, Sun X
. Magnetic multiwalled carbon nanotubes with controlled release of epirubicin: an intravesical instillation system for bladder cancer. Int J Nanomedicine. 2019; 14:1241-1254.
PMC: 6391142.
DOI: 10.2147/IJN.S189688.
View
13.
Salehiabar M, Nosrati H, Javani E, Aliakbarzadeh F, Manjili H, Davaran S
. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int J Biol Macromol. 2018; 115:83-89.
DOI: 10.1016/j.ijbiomac.2018.04.043.
View
14.
Nishita M, Park S, Nishio T, Kamizaki K, Wang Z, Tamada K
. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Sci Rep. 2017; 7(1):1.
PMC: 5428335.
DOI: 10.1038/s41598-016-0028-x.
View
14.
Li Z, Fan J, Tong C, Zhou H, Wang W, Li B
. A smart drug-delivery nanosystem based on carboxylated graphene quantum dots for tumor-targeted chemotherapy. Nanomedicine (Lond). 2019; 14(15):2011-2025.
DOI: 10.2217/nnm-2018-0378.
View
15.
Tian R, Long X, Yang Z, Lu N, Peng Y
. Formation of a bovine serum albumin diligand complex with rutin and single-walled carbon nanotubes for the reduction of cytotoxicity. Biophys Chem. 2019; 256:106268.
DOI: 10.1016/j.bpc.2019.106268.
View
16.
Dinan N, Atyabi F, Rouini M, Amini M, Golabchifar A, Dinarvand R
. Doxorubicin loaded folate-targeted carbon nanotubes: preparation, cellular internalization, in vitro cytotoxicity and disposition kinetic study in the isolated perfused rat liver. Mater Sci Eng C Mater Biol Appl. 2014; 39:47-55.
DOI: 10.1016/j.msec.2014.01.055.
View
17.
Singh R, Sharma G, Sonali , Singh S, Bharti S, Pandey B
. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater Sci Eng C Mater Biol Appl. 2017; 77:446-458.
DOI: 10.1016/j.msec.2017.03.225.
View
18.
Iqbal H, Razzaq A, Khan N, Rehman S, Webster T, Xiao R
. pH-responsive albumin-coated biopolymeric nanoparticles with lapatinab for targeted breast cancer therapy. Biomater Adv. 2022; 139:213039.
DOI: 10.1016/j.bioadv.2022.213039.
View
19.
Yang Z, Zhang N, Ma T, Liu L, Zhao L, Xie H
. Engineered bovine serum albumin-based nanoparticles with pH-sensitivity for doxorubicin delivery and controlled release. Drug Deliv. 2020; 27(1):1156-1164.
PMC: 7470134.
DOI: 10.1080/10717544.2020.1797243.
View