6.
Ek M, Ramasse Q, Arnarson L, Moses P, Helveg S
. Visualizing atomic-scale redox dynamics in vanadium oxide-based catalysts. Nat Commun. 2017; 8(1):305.
PMC: 5563508.
DOI: 10.1038/s41467-017-00385-y.
View
7.
Marberger A, Ferri D, Elsener M, Krocher O
. The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium-Based Catalysts. Angew Chem Int Ed Engl. 2016; 55(39):11989-94.
DOI: 10.1002/anie.201605397.
View
8.
Han L, Cai S, Gao M, Hasegawa J, Wang P, Zhang J
. Selective Catalytic Reduction of NO with NH by Using Novel Catalysts: State of the Art and Future Prospects. Chem Rev. 2019; 119(19):10916-10976.
DOI: 10.1021/acs.chemrev.9b00202.
View
9.
Wang S, Liu J, Jin Z, Guo S, Cheng D, Deng J
. Gas-Phase Regeneration of Metal-Poisoned VO-WO/TiO NH-SCR Catalysts via a Masking and Reconstruction Strategy. Environ Sci Technol. 2024; .
DOI: 10.1021/acs.est.4c05260.
View
10.
Xu L, Wang C, Chang H, Wu Q, Zhang T, Li J
. New Insight into SO Poisoning and Regeneration of CeO-WO/TiO and VO-WO/TiO Catalysts for Low-Temperature NH-SCR. Environ Sci Technol. 2018; 52(12):7064-7071.
DOI: 10.1021/acs.est.8b01990.
View
11.
Beale A, Gao F, Lezcano-Gonzalez I, Peden C, Szanyi J
. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem Soc Rev. 2015; 44(20):7371-405.
DOI: 10.1039/c5cs00108k.
View
12.
Wang Y, Yi W, Yu J, Zeng J, Chang H
. Novel Methods for Assessing the SO Poisoning Effect and Thermal Regeneration Possibility of MO-WO/TiO (M = Fe, Mn, Cu, and V) Catalysts for NH-SCR. Environ Sci Technol. 2020; 54(19):12612-12620.
DOI: 10.1021/acs.est.0c02840.
View
13.
Chen G, Chen J, Chen X, Yin R, Li K, Li J
. Monolith or Powder: Improper Sample Pretreatment May Mislead the Understanding of Industrial VO-WO/TiO Catalysts Operated in Stationary Resources. Environ Sci Technol. 2022; 56(22):16394-16399.
DOI: 10.1021/acs.est.2c05022.
View
14.
Kim S, Choi Y, Lee M, Lee D
. Nitration-Promoted Vanadate Catalysts for Low-Temperature Selective Catalytic Reduction of NO with NH. ACS Omega. 2023; 8(37):34152-34159.
PMC: 10515594.
DOI: 10.1021/acsomega.3c05423.
View
15.
Zhu M, Lai J, Tumuluri U, Wu Z, Wachs I
. Nature of Active Sites and Surface Intermediates during SCR of NO with NH₃ by Supported V₂O₅--WO₃/TiO₂ Catalysts. J Am Chem Soc. 2017; 139(44):15624-15627.
DOI: 10.1021/jacs.7b09646.
View
16.
Granger P, Parvulescu V
. Catalytic NO(x) abatement systems for mobile sources: from three-way to lean burn after-treatment technologies. Chem Rev. 2011; 111(5):3155-207.
DOI: 10.1021/cr100168g.
View
17.
Inomata Y, Kubota H, Hata S, Kiyonaga E, Morita K, Yoshida K
. Bulk tungsten-substituted vanadium oxide for low-temperature NOx removal in the presence of water. Nat Commun. 2021; 12(1):557.
PMC: 7835234.
DOI: 10.1038/s41467-020-20867-w.
View
18.
Lian Z, Deng H, Xin S, Shan W, Wang Q, Xu J
. Significant promotion effect of the rutile phase on VO/TiO catalysts for NH-SCR. Chem Commun (Camb). 2020; 57(3):355-358.
DOI: 10.1039/d0cc05938b.
View
19.
Jaegers N, Lai J, He Y, Walter E, Dixon D, Vasiliu M
. Mechanism by which Tungsten Oxide Promotes the Activity of Supported V O /TiO Catalysts for NO Abatement: Structural Effects Revealed by V MAS NMR Spectroscopy. Angew Chem Int Ed Engl. 2019; 58(36):12609-12616.
DOI: 10.1002/anie.201904503.
View
20.
Arnarson L, Falsig H, Rasmussen S, Lauritsen J, Moses P
. The reaction mechanism for the SCR process on monomer V(5+) sites and the effect of modified Brønsted acidity. Phys Chem Chem Phys. 2016; 18(25):17071-80.
DOI: 10.1039/c6cp02274j.
View