6.
Munns R, Tester M
. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008; 59:651-81.
DOI: 10.1146/annurev.arplant.59.032607.092911.
View
7.
Wang Y, Huang L, Du F, Wang J, Zhao X, Li Z
. Comparative transcriptome and metabolome profiling reveal molecular mechanisms underlying OsDRAP1-mediated salt tolerance in rice. Sci Rep. 2021; 11(1):5166.
PMC: 7933422.
DOI: 10.1038/s41598-021-84638-3.
View
8.
Wang W, Zhao X, Li M, Huang L, Xu J, Zhang F
. Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. J Exp Bot. 2015; 67(1):405-19.
PMC: 4682442.
DOI: 10.1093/jxb/erv476.
View
9.
Mekawy A, Assaha D, Yahagi H, Tada Y, Ueda A, Saneoka H
. Growth, physiological adaptation, and gene expression analysis of two Egyptian rice cultivars under salt stress. Plant Physiol Biochem. 2014; 87:17-25.
DOI: 10.1016/j.plaphy.2014.12.007.
View
10.
Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K
. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol. 1997; 33(5):857-65.
DOI: 10.1023/a:1005702408601.
View
11.
Xu Y, Lu J, Zhang J, Liu D, Wang Y, Niu Q
. Transcriptome revealed the molecular mechanism of Glycyrrhiza inflata root to maintain growth and development, absorb and distribute ions under salt stress. BMC Plant Biol. 2021; 21(1):599.
PMC: 8675533.
DOI: 10.1186/s12870-021-03342-6.
View
12.
Platten J, Egdane J, Ismail A
. Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism?. BMC Plant Biol. 2013; 13:32.
PMC: 3599985.
DOI: 10.1186/1471-2229-13-32.
View
13.
Xie Z, Wang J, Wang W, Wang Y, Xu J, Li Z
. Integrated Analysis of the Transcriptome and Metabolome Revealed the Molecular Mechanisms Underlying the Enhanced Salt Tolerance of Rice Due to the Application of Exogenous Melatonin. Front Plant Sci. 2021; 11:618680.
PMC: 7840565.
DOI: 10.3389/fpls.2020.618680.
View
14.
Yancey P
. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol. 2005; 208(Pt 15):2819-30.
DOI: 10.1242/jeb.01730.
View
15.
Zheng J, Zhuang Y, Mao H, Jang I
. Overexpression of SrDXS1 and SrKAH enhances steviol glycosides content in transgenic Stevia plants. BMC Plant Biol. 2019; 19(1):1.
PMC: 6318952.
DOI: 10.1186/s12870-018-1600-2.
View
15.
Zhang Y, Li D, Zhou R, Wang X, Dossa K, Wang L
. Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress. BMC Plant Biol. 2019; 19(1):66.
PMC: 6371534.
DOI: 10.1186/s12870-019-1665-6.
View
16.
Ismail A, Horie T
. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. Annu Rev Plant Biol. 2017; 68:405-434.
DOI: 10.1146/annurev-arplant-042916-040936.
View
17.
Niron H, Barlas N, Salih B, Turet M
. Comparative Transcriptome, Metabolome, and Ionome Analysis of Two Contrasting Common Bean Genotypes in Saline Conditions. Front Plant Sci. 2020; 11:599501.
PMC: 7758407.
DOI: 10.3389/fpls.2020.599501.
View
18.
Azevedo R, de Sousa J, Araujo M, Martins Filho A, de Alcantara B, Araujo F
. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Sci Rep. 2018; 8(1):1.
PMC: 5758755.
DOI: 10.1038/s41598-017-17765-5.
View
18.
Zhang J, Shi H
. Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res. 2013; 115(1):1-22.
DOI: 10.1007/s11120-013-9813-6.
View