5.
Lodha S, Saggar S, Celebi J, Silvers D
. Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting. J Cutan Pathol. 2008; 35(4):349-52.
DOI: 10.1111/j.1600-0560.2007.00970.x.
View
6.
Hekler A, Utikal J, Enk A, Solass W, Schmitt M, Klode J
. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer. 2019; 118:91-96.
DOI: 10.1016/j.ejca.2019.06.012.
View
7.
Corona R, Mele A, Amini M, De Rosa G, Coppola G, Piccardi P
. Interobserver variability on the histopathologic diagnosis of cutaneous melanoma and other pigmented skin lesions. J Clin Oncol. 1996; 14(4):1218-23.
DOI: 10.1200/JCO.1996.14.4.1218.
View
8.
Veenhuizen K, de Wit P, Mooi W, Scheffer E, Verbeek A, Ruiter D
. Quality assessment by expert opinion in melanoma pathology: experience of the pathology panel of the Dutch Melanoma Working Party. J Pathol. 1997; 182(3):266-72.
DOI: 10.1002/(SICI)1096-9896(199707)182:3<266::AID-PATH812>3.0.CO;2-#.
View
9.
Bauer J, Leinweber B, Metzler G, Blum A, Hofmann-Wellenhof R, Leitz N
. Correlation with digital dermoscopic images can help dermatopathologists to diagnose equivocal skin tumours. Br J Dermatol. 2006; 155(3):546-51.
DOI: 10.1111/j.1365-2133.2006.07342.x.
View
10.
Ferrara G, Annessi G, Argenyi Z, Argenziano G, Beltraminelli H, Cerio R
. Prior knowledge of the clinical picture does not introduce bias in the histopathologic diagnosis of melanocytic skin lesions. J Cutan Pathol. 2015; 42(12):953-958.
DOI: 10.1111/cup.12589.
View
11.
Mitteldorf C, Tronnier M
. Dermatopathology - Current status and development in German-speaking dermatology. J Dtsch Dermatol Ges. 2023; 21(4):393-397.
DOI: 10.1111/ddg.15047.
View
12.
Song H, Kim M, Park D, Shin Y, Lee J
. Learning From Noisy Labels With Deep Neural Networks: A Survey. IEEE Trans Neural Netw Learn Syst. 2022; 34(11):8135-8153.
DOI: 10.1109/TNNLS.2022.3152527.
View
13.
Arnold M, Singh D, Laversanne M, Vignat J, Vaccarella S, Meheus F
. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022; 158(5):495-503.
PMC: 8968696.
DOI: 10.1001/jamadermatol.2022.0160.
View
14.
Cohen J, Korevaar D, Altman D, Bruns D, Gatsonis C, Hooft L
. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2017; 6(11):e012799.
PMC: 5128957.
DOI: 10.1136/bmjopen-2016-012799.
View
15.
Ferrara G, Argenyi Z, Argenziano G, Cerio R, Cerroni L, Di Blasi A
. The influence of clinical information in the histopathologic diagnosis of melanocytic skin neoplasms. PLoS One. 2009; 4(4):e5375.
PMC: 2671836.
DOI: 10.1371/journal.pone.0005375.
View
16.
Barnhill R, Argenyi Z, From L, Glass L, Maize J, Mihm Jr M
. Atypical Spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome. Hum Pathol. 1999; 30(5):513-20.
DOI: 10.1016/s0046-8177(99)90193-4.
View
17.
Brinker T, Schmitt M, Krieghoff-Henning E, Barnhill R, Beltraminelli H, Braun S
. Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists. J Am Acad Dermatol. 2021; 86(3):640-642.
DOI: 10.1016/j.jaad.2021.02.009.
View
18.
Esteva A, Kuprel B, Novoa R, Ko J, Swetter S, Blau H
. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542(7639):115-118.
PMC: 8382232.
DOI: 10.1038/nature21056.
View
19.
Hekler A, Kather J, Krieghoff-Henning E, Utikal J, Meier F, Gellrich F
. Effects of Label Noise on Deep Learning-Based Skin Cancer Classification. Front Med (Lausanne). 2020; 7:177.
PMC: 7218064.
DOI: 10.3389/fmed.2020.00177.
View