6.
Chen P, Wu T, Wang P, Chang D, Liu K, Wu M
. Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study. Radiology. 2022; 306(1):172-182.
DOI: 10.1148/radiol.220152.
View
7.
Liu R, Pan D, Xu Y, Zeng H, He Z, Lin J
. A deep learning-machine learning fusion approach for the classification of benign, malignant, and intermediate bone tumors. Eur Radiol. 2021; 32(2):1371-1383.
DOI: 10.1007/s00330-021-08195-z.
View
8.
Li J, Li S, Li X, Miao S, Dong C, Gao C
. Primary bone tumor detection and classification in full-field bone radiographs via YOLO deep learning model. Eur Radiol. 2022; 33(6):4237-4248.
DOI: 10.1007/s00330-022-09289-y.
View
9.
Abedeen I, Rahman M, Prottyasha F, Ahmed T, Chowdhury T, Shatabda S
. FracAtlas: A Dataset for Fracture Classification, Localization and Segmentation of Musculoskeletal Radiographs. Sci Data. 2023; 10(1):521.
PMC: 10404222.
DOI: 10.1038/s41597-023-02432-4.
View
10.
Yu D, Hu J, Feng Z, Song M, Zhu H
. Deep learning based diagnosis for cysts and tumors of jaw with massive healthy samples. Sci Rep. 2022; 12(1):1855.
PMC: 8814152.
DOI: 10.1038/s41598-022-05913-5.
View
11.
Shao J, Lin H, Ding L, Li B, Xu D, Sun Y
. Deep learning for differentiation of osteolytic osteosarcoma and giant cell tumor around the knee joint on radiographs: a multicenter study. Insights Imaging. 2024; 15(1):35.
PMC: 10847082.
DOI: 10.1186/s13244-024-01610-1.
View
12.
Meng Y, Yang Y, Hu M, Zhang Z, Zhou X
. Artificial intelligence-based radiomics in bone tumors: Technical advances and clinical application. Semin Cancer Biol. 2023; 95:75-87.
DOI: 10.1016/j.semcancer.2023.07.003.
View
13.
Hinterwimmer F, Smits Serena R, Wilhelm N, Breden S, Consalvo S, Seidl F
. Recommender-based bone tumour classification with radiographs-a link to the past. Eur Radiol. 2024; 34(10):6629-6638.
PMC: 11399296.
DOI: 10.1007/s00330-024-10672-0.
View
14.
Xu Z, Niu K, Tang S, Song T, Rong Y, Guo W
. Bone tumor necrosis rate detection in few-shot X-rays based on deep learning. Comput Med Imaging Graph. 2022; 102:102141.
DOI: 10.1016/j.compmedimag.2022.102141.
View
15.
Ying H, Liu X, Zhang M, Ren Y, Zhen S, Wang X
. A multicenter clinical AI system study for detection and diagnosis of focal liver lesions. Nat Commun. 2024; 15(1):1131.
PMC: 10850133.
DOI: 10.1038/s41467-024-45325-9.
View
16.
Consalvo S, Hinterwimmer F, Neumann J, Steinborn M, Salzmann M, Seidl F
. Two-Phase Deep Learning Algorithm for Detection and Differentiation of Ewing Sarcoma and Acute Osteomyelitis in Paediatric Radiographs. Anticancer Res. 2022; 42(9):4371-4380.
DOI: 10.21873/anticanres.15937.
View
17.
Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A
. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol. 2021; 19(2):132-146.
PMC: 9034765.
DOI: 10.1038/s41571-021-00560-7.
View
18.
Gianferante D, Mirabello L, Savage S
. Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017; 13(8):480-491.
DOI: 10.1038/nrendo.2017.16.
View
19.
Lacroix M, Aouad T, Feydy J, Biau D, Larousserie F, Fournier L
. Artificial intelligence in musculoskeletal oncology imaging: A critical review of current applications. Diagn Interv Imaging. 2022; 104(1):18-23.
DOI: 10.1016/j.diii.2022.10.004.
View
20.
von Schacky C, Wilhelm N, Schafer V, Leonhardt Y, Gassert F, Foreman S
. Multitask Deep Learning for Segmentation and Classification of Primary Bone Tumors on Radiographs. Radiology. 2021; 301(2):398-406.
DOI: 10.1148/radiol.2021204531.
View