6.
Amouzegar A, Chelvanambi M, Filderman J, Storkus W, Luke J
. STING Agonists as Cancer Therapeutics. Cancers (Basel). 2021; 13(11).
PMC: 8198217.
DOI: 10.3390/cancers13112695.
View
7.
Corrales L, Glickman L, McWhirter S, Kanne D, Sivick K, Katibah G
. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep. 2015; 11(7):1018-30.
PMC: 4440852.
DOI: 10.1016/j.celrep.2015.04.031.
View
8.
Wang-Bishop L, Kimmel B, Ngwa V, Madden M, Baljon J, Florian D
. STING-activating nanoparticles normalize the vascular-immune interface to potentiate cancer immunotherapy. Sci Immunol. 2023; 8(83):eadd1153.
PMC: 10226150.
DOI: 10.1126/sciimmunol.add1153.
View
9.
Meric-Bernstam F, Sweis R, Hodi F, Messersmith W, Andtbacka R, Ingham M
. Phase I Dose-Escalation Trial of MIW815 (ADU-S100), an Intratumoral STING Agonist, in Patients with Advanced/Metastatic Solid Tumors or Lymphomas. Clin Cancer Res. 2021; 28(4):677-688.
DOI: 10.1158/1078-0432.CCR-21-1963.
View
10.
Meric-Bernstam F, Sweis R, Kasper S, Hamid O, Bhatia S, Dummer R
. Combination of the STING Agonist MIW815 (ADU-S100) and PD-1 Inhibitor Spartalizumab in Advanced/Metastatic Solid Tumors or Lymphomas: An Open-Label, Multicenter, Phase Ib Study. Clin Cancer Res. 2022; 29(1):110-121.
PMC: 11188043.
DOI: 10.1158/1078-0432.CCR-22-2235.
View
11.
Yang K, Han W, Jiang X, Piffko A, Bugno J, Han C
. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration. Nat Nanotechnol. 2022; 17(12):1322-1331.
DOI: 10.1038/s41565-022-01225-x.
View
12.
Flood B, Higgs E, Li S, Luke J, Gajewski T
. STING pathway agonism as a cancer therapeutic. Immunol Rev. 2019; 290(1):24-38.
PMC: 6814203.
DOI: 10.1111/imr.12765.
View
13.
Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T
. Activation of STING requires palmitoylation at the Golgi. Nat Commun. 2016; 7:11932.
PMC: 4919521.
DOI: 10.1038/ncomms11932.
View
14.
Junttila M, de Sauvage F
. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013; 501(7467):346-54.
DOI: 10.1038/nature12626.
View
15.
Viengkhou B, Hayashida E, McGlasson S, Emelianova K, Forbes D, Wiseman S
. The brain microvasculature is a primary mediator of interferon-α neurotoxicity in human cerebral interferonopathies. Immunity. 2024; 57(7):1696-1709.e10.
PMC: 11250091.
DOI: 10.1016/j.immuni.2024.05.017.
View
16.
Jeong S, Yang M, Choi S, Kim J, Koh G
. Refractoriness of STING therapy is relieved by AKT inhibitor through effective vascular disruption in tumour. Nat Commun. 2021; 12(1):4405.
PMC: 8292391.
DOI: 10.1038/s41467-021-24603-w.
View
17.
Lanitis E, Irving M, Coukos G
. Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol. 2015; 33:55-63.
PMC: 4896929.
DOI: 10.1016/j.coi.2015.01.011.
View
18.
Vaddi K, Sarlis N, Gupta V
. Ruxolitinib, an oral JAK1 and JAK2 inhibitor, in myelofibrosis. Expert Opin Pharmacother. 2012; 13(16):2397-407.
DOI: 10.1517/14656566.2012.732998.
View
19.
Yang M, Jiang H, Ding C, Zhang L, Ding N, Li G
. STING activation in platelets aggravates septic thrombosis by enhancing platelet activation and granule secretion. Immunity. 2023; 56(5):1013-1026.e6.
DOI: 10.1016/j.immuni.2023.02.015.
View
20.
Chin E, Yu C, Vartabedian V, Jia Y, Kumar M, Gamo A
. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science. 2020; 369(6506):993-999.
DOI: 10.1126/science.abb4255.
View