6.
Kenyhercz W, Raterman B, Priyanka Illapani V, Dowell J, Mo X, White R
. Quantification of aortic stiffness using magnetic resonance elastography: Measurement reproducibility, pulse wave velocity comparison, changes over cardiac cycle, and relationship with age. Magn Reson Med. 2015; 75(5):1920-6.
PMC: 4676954.
DOI: 10.1002/mrm.25719.
View
7.
Niestrawska J, Regitnig P, Viertler C, Cohnert T, Babu A, Holzapfel G
. The role of tissue remodeling in mechanics and pathogenesis of abdominal aortic aneurysms. Acta Biomater. 2019; 88:149-161.
DOI: 10.1016/j.actbio.2019.01.070.
View
8.
Eaton J, Sen A, Hoodeshenas S, Schleck C, Harmsen W, Gores G
. Changes in Liver Stiffness, Measured by Magnetic Resonance Elastography, Associated With Hepatic Decompensation in Patients With Primary Sclerosing Cholangitis. Clin Gastroenterol Hepatol. 2019; 18(7):1576-1583.e1.
PMC: 7887700.
DOI: 10.1016/j.cgh.2019.10.041.
View
9.
Venkatesh S, Yin M, Ehman R
. Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging. 2013; 37(3):544-55.
PMC: 3579218.
DOI: 10.1002/jmri.23731.
View
10.
Humphrey J, Holzapfel G
. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech. 2011; 45(5):805-14.
PMC: 3294195.
DOI: 10.1016/j.jbiomech.2011.11.021.
View
11.
Kessler V, Klopf J, Eilenberg W, Neumayer C, Brostjan C
. AAA Revisited: A Comprehensive Review of Risk Factors, Management, and Hallmarks of Pathogenesis. Biomedicines. 2022; 10(1).
PMC: 8773452.
DOI: 10.3390/biomedicines10010094.
View
12.
Zottola Z, Kong D, Medhekar A, Frye L, Hao S, Gonring D
. Intermediate pressure-normalized principal wall strain values are associated with increased abdominal aortic aneurysmal growth rates. Front Cardiovasc Med. 2023; 10:1232844.
PMC: 10501562.
DOI: 10.3389/fcvm.2023.1232844.
View
13.
Dong H, Mazumder R, Priyanka Illapani V, Mo X, White R, Kolipaka A
. In vivo quantification of aortic stiffness using MR elastography in hypertensive porcine model. Magn Reson Med. 2017; 78(6):2315-2321.
PMC: 5545074.
DOI: 10.1002/mrm.26601.
View
14.
Prokop E, Palmer R, WHEAT Jr M
. Hydrodynamic forces in dissecting aneurysms. In-vitro studies in a Tygon model and in dog aortas. Circ Res. 1970; 27(1):121-7.
DOI: 10.1161/01.res.27.1.121.
View
15.
Rudenick P, Segers P, Pineda V, Cuellar H, Garcia-Dorado D, Evangelista A
. False Lumen Flow Patterns and their Relation with Morphological and Biomechanical Characteristics of Chronic Aortic Dissections. Computational Model Compared with Magnetic Resonance Imaging Measurements. PLoS One. 2017; 12(1):e0170888.
PMC: 5270334.
DOI: 10.1371/journal.pone.0170888.
View
16.
Nollen G, Groenink M, Tijssen J, van der Wall E, Mulder B
. Aortic stiffness and diameter predict progressive aortic dilatation in patients with Marfan syndrome. Eur Heart J. 2004; 25(13):1146-52.
DOI: 10.1016/j.ehj.2004.04.033.
View
17.
Sigman M, Palmer O, Ham S, Cunningham M, Weaver F
. Aortic morphologic findings after thoracic endovascular aortic repair for type B aortic dissection. JAMA Surg. 2014; 149(9):977-83.
DOI: 10.1001/jamasurg.2014.1327.
View
18.
Zuidema J, Rivet C, Gilbert R, Morrison F
. A protocol for rheological characterization of hydrogels for tissue engineering strategies. J Biomed Mater Res B Appl Biomater. 2013; 102(5):1063-73.
DOI: 10.1002/jbm.b.33088.
View
19.
van Disseldorp E, Petterson N, van de Vosse F, van Sambeek M, Lopata R
. Quantification of aortic stiffness and wall stress in healthy volunteers and abdominal aortic aneurysm patients using time-resolved 3D ultrasound: a comparison study. Eur Heart J Cardiovasc Imaging. 2018; 20(2):185-191.
DOI: 10.1093/ehjci/jey051.
View
20.
Khan S, Fakhouri F, Majeed W, Kolipaka A
. Cardiovascular magnetic resonance elastography: A review. NMR Biomed. 2017; 31(10):e3853.
PMC: 5975119.
DOI: 10.1002/nbm.3853.
View