6.
Christin P, Besnard G
. Two independent C4 origins in Aristidoideae (Poaceae) revealed by the recruitment of distinct phosphoenolpyruvate carboxylase genes. Am J Bot. 2011; 96(12):2234-9.
DOI: 10.3732/ajb.0900111.
View
7.
Christin P, Salamin N, Savolainen V, Duvall M, Besnard G
. C4 Photosynthesis evolved in grasses via parallel adaptive genetic changes. Curr Biol. 2007; 17(14):1241-7.
DOI: 10.1016/j.cub.2007.06.036.
View
8.
Danecek P, Bonfield J, Liddle J, Marshall J, Ohan V, Pollard M
. Twelve years of SAMtools and BCFtools. Gigascience. 2021; 10(2).
PMC: 7931819.
DOI: 10.1093/gigascience/giab008.
View
9.
DiMario R, Kophs A, Pathare V, Schnable J, Cousins A
. Kinetic variation in grass phosphoenolpyruvate carboxylases provides opportunity to enhance C photosynthetic efficiency. Plant J. 2020; 105(6):1677-1688.
DOI: 10.1111/tpj.15141.
View
10.
DiMario R, Cousins A
. A single serine to alanine substitution decreases bicarbonate affinity of phosphoenolpyruvate carboxylase in C4Flaveria trinervia. J Exp Bot. 2018; 70(3):995-1004.
PMC: 6363079.
DOI: 10.1093/jxb/ery403.
View
11.
Engelmann S, Blasing O, Westhoff P, Svensson P
. Serine 774 and amino acids 296 to 437 comprise the major C4 determinants of the C4 phosphoenolpyruvate carboxylase of Flaveria trinervia. FEBS Lett. 2002; 524(1-3):11-4.
DOI: 10.1016/s0014-5793(02)02975-7.
View
12.
Engelmann S, Blasing O, Gowik U, Svensson P, Westhoff P
. Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria--a gradual increase from C3 to C4 characteristics. Planta. 2003; 217(5):717-25.
DOI: 10.1007/s00425-003-1045-0.
View
13.
Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M
. cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell. 2004; 16(5):1077-90.
PMC: 423201.
DOI: 10.1105/tpc.019729.
View
14.
Heckmann D, Schulze S, Denton A, Gowik U, Westhoff P, Weber A
. Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell. 2013; 153(7):1579-88.
DOI: 10.1016/j.cell.2013.04.058.
View
15.
Hibberd J, Covshoff S
. The regulation of gene expression required for C4 photosynthesis. Annu Rev Plant Biol. 2010; 61:181-207.
DOI: 10.1146/annurev-arplant-042809-112238.
View
16.
Jacobs B, Engelmann S, Westhoff P, Gowik U
. Evolution of C(4) phosphoenolpyruvate carboxylase in Flaveria: determinants for high tolerance towards the inhibitor L-malate. Plant Cell Environ. 2008; 31(6):793-803.
DOI: 10.1111/j.1365-3040.2008.01796.x.
View
17.
Kai Y, Matsumura H, Izui K
. Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Arch Biochem Biophys. 2003; 414(2):170-9.
DOI: 10.1016/s0003-9861(03)00170-x.
View
18.
Kim D, Paggi J, Park C, Bennett C, Salzberg S
. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019; 37(8):907-915.
PMC: 7605509.
DOI: 10.1038/s41587-019-0201-4.
View
19.
Leegood R, von Caemmerer S
. The relationship between contents of photosynthetic metabolites and the rate of photosynthetic carbon assimilation in leaves of Amaranthus edulis L. Planta. 2013; 174(2):253-62.
DOI: 10.1007/BF00394779.
View
20.
Lundgren M, Osborne C, Christin P
. Deconstructing Kranz anatomy to understand C4 evolution. J Exp Bot. 2014; 65(13):3357-69.
DOI: 10.1093/jxb/eru186.
View