6.
Ghosh S, Whitley C, Haribabu B, Jala V
. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell Mol Gastroenterol Hepatol. 2021; 11(5):1463-1482.
PMC: 8025057.
DOI: 10.1016/j.jcmgh.2021.02.007.
View
7.
Gonzalez F, Jiang C, Patterson A
. An Intestinal Microbiota-Farnesoid X Receptor Axis Modulates Metabolic Disease. Gastroenterology. 2016; 151(5):845-859.
PMC: 5159222.
DOI: 10.1053/j.gastro.2016.08.057.
View
8.
He K, Hu Y, Shi J, Zhu Y, Mao X
. Prevalence, risk factors and microorganisms of urinary tract infections in patients with type 2 diabetes mellitus: a retrospective study in China. Ther Clin Risk Manag. 2018; 14:403-408.
PMC: 5834170.
DOI: 10.2147/TCRM.S147078.
View
9.
Jena P, Sheng L, Nguyen M, Di Lucente J, Hu Y, Li Y
. Dysregulated bile acid receptor-mediated signaling and IL-17A induction are implicated in diet-associated hepatic health and cognitive function. Biomark Res. 2020; 8(1):59.
PMC: 7648397.
DOI: 10.1186/s40364-020-00239-8.
View
10.
Joyce S, OMalley D
. Regional and conditional variability of FXR: new lessons on ileal inflammation and gut barrier functions. Am J Physiol Gastrointest Liver Physiol. 2024; 327(5):G626-G628.
DOI: 10.1152/ajpgi.00226.2024.
View
11.
Kayama H, Okumura R, Takeda K
. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu Rev Immunol. 2020; 38:23-48.
DOI: 10.1146/annurev-immunol-070119-115104.
View
12.
Kesika P, Suganthy N, Sivamaruthi B, Chaiyasut C
. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease. Life Sci. 2020; 264:118627.
DOI: 10.1016/j.lfs.2020.118627.
View
13.
Little K, Llorian-Salvador M, Scullion S, Hernandez C, Simo-Servat O, Del Marco A
. Common pathways in dementia and diabetic retinopathy: understanding the mechanisms of diabetes-related cognitive decline. Trends Endocrinol Metab. 2021; 33(1):50-71.
DOI: 10.1016/j.tem.2021.10.008.
View
14.
Liu T, Kern J, Jain U, Sonnek N, Xiong S, Simpson K
. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host Microbe. 2021; 29(6):988-1001.e6.
PMC: 8192497.
DOI: 10.1016/j.chom.2021.04.004.
View
15.
Liu W, Liu Y, Zhang M, Qin M, Yang Y, Liu B
. A comparative study of the ameliorative effects of hyaluronic acid oligosaccharides and hyaluronic acid on DSS-induced colitis in mice and research on relevant mechanisms. Food Funct. 2023; 14(14):6482-6495.
DOI: 10.1039/d2fo03644d.
View
16.
Magliano D, Islam R, Barr E, Gregg E, Pavkov M, Harding J
. Trends in incidence of total or type 2 diabetes: systematic review. BMJ. 2019; 366:l5003.
PMC: 6737490.
DOI: 10.1136/bmj.l5003.
View
17.
Galdeano C, Cazorla S, Lemme Dumit J, Velez E, Perdigon G
. Beneficial Effects of Probiotic Consumption on the Immune System. Ann Nutr Metab. 2019; 74(2):115-124.
DOI: 10.1159/000496426.
View
18.
Mauch T, Donohue Jr T, Zetterman R, Sorrell M, Tuma D
. Covalent binding of acetaldehyde selectively inhibits the catalytic activity of lysine-dependent enzymes. Hepatology. 1986; 6(2):263-9.
DOI: 10.1002/hep.1840060218.
View
19.
Meynier M, Baudu E, Rolhion N, Defaye M, Straube M, Daugey V
. AhR/IL-22 pathway as new target for the treatment of post-infectious irritable bowel syndrome symptoms. Gut Microbes. 2022; 14(1):2022997.
PMC: 8803069.
DOI: 10.1080/19490976.2021.2022997.
View
20.
Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y
. Gut Microbiota Interact With the Brain Through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Front Immunol. 2022; 13:796288.
PMC: 9021448.
DOI: 10.3389/fimmu.2022.796288.
View