» Articles » PMID: 3980778

A Morphological Study of Glial Cells in the Hypoglossal Nucleus of the Cat During Nerve Regeneration

Overview
Journal J Comp Neurol
Specialty Neurology
Date 1985 Mar 22
PMID 3980778
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The cat hypoglossal nerve and nucleus have been used as a model for the study of the occurrence and time course of modifications in the size and composition of the perineuronal glial cell population as they relate to cytological changes in the nerve cell body and the initiation and progress of axon regeneration. Animals were killed at 2, 5, 10, 20, 35, 65, and 115 days after crush injury to the hypoglossal nerve. At 5 days after surgery, growth cones and regenerating unmyelinated axons were present at the lesion site, but no conspicuous changes were apparent in the nerve cell bodies. At 10 days after surgery, the granular endoplasmic reticulum was disaggregated and depleted. The elongation phase appeared to be completed at 20 days, as judged by the bilateral retrograde labeling of the hypoglossal nuclei with horseradish peroxidase. By 35 days, the cytoarchitecture of the nerve cell bodies and maturation of axons, as determined by a comparison of the relative frequency distribution of cross sectional areas proximal and distal to the lesion, were completely restored. Comparative quantitative light microscopic examination of the hypoglossal nuclei of intact and experimental animals failed to reveal any statistically significant differences in the total number of glial cells, number of glial cells/unit area of neuropil, or relative proportions of glial cell types at any of the postoperative time intervals. Moreover, electron microscopic quantitation of the microglial cell population did not reveal any significant alterations in the number, density, location, or morphology of these cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Citing Articles

Synaptic Plasticity on Motoneurons After Axotomy: A Necessary Change in Paradigm.

Alvarez F, Rotterman T, Akhter E, Lane A, English A, Cope T Front Mol Neurosci. 2020; 13:68.

PMID: 32425754 PMC: 7203341. DOI: 10.3389/fnmol.2020.00068.


A bromodeoxyuridine labelling study of proliferating cells in the brainstem following hypoglossal nerve transection.

Svensson M, Mattsson P, Aldskogius H J Anat. 1994; 185 ( Pt 3):537-42.

PMID: 7649789 PMC: 1166660.


Changes in microglial cell numbers in the spinal cord dorsal horn following brachial plexus transection in the adult rat.

Cova J, Aldskogius H, Arvidsson J, Molander C Exp Brain Res. 1988; 73(1):61-8.

PMID: 2850213 DOI: 10.1007/BF00279661.


Neuroglial response to neuron injury. A study using intraneural injection of ricinus communis agglutinin-60.

Ling E, Wen C, Shieh J, Yick T, Leong S J Anat. 1989; 164:201-13.

PMID: 2606792 PMC: 1256610.