6.
Sevastianov V, Perova N, Shishatskaya E, Kalacheva G, Volova T
. Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. J Biomater Sci Polym Ed. 2003; 14(10):1029-42.
DOI: 10.1163/156856203769231547.
View
7.
Jiang L, Jiang Y, Stiadle J, Wang X, Wang L, Li Q
. Electrospun nanofibrous thermoplastic polyurethane/poly(glycerol sebacate) hybrid scaffolds for vocal fold tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2018; 94:740-749.
PMC: 6390294.
DOI: 10.1016/j.msec.2018.10.027.
View
8.
Zou Y, Zhang L, Yang L, Zhu F, Ding M, Lin F
. "Click" chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. J Control Release. 2018; 273:160-179.
DOI: 10.1016/j.jconrel.2018.01.023.
View
9.
Kalirajan C, Dukle A, Nathanael A, Oh T, Manivasagam G
. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers (Basel). 2021; 13(17).
PMC: 8433665.
DOI: 10.3390/polym13173015.
View
10.
Doss B, Pan M, Gupta M, Grenci G, Mege R, Lim C
. Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress. Proc Natl Acad Sci U S A. 2020; 117(23):12817-12825.
PMC: 7293595.
DOI: 10.1073/pnas.1917555117.
View
11.
Xu C, Hong Y
. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact Mater. 2022; 15:250-271.
PMC: 8940769.
DOI: 10.1016/j.bioactmat.2021.11.029.
View
12.
Carotenuto F, Politi S, Ul Haq A, De Matteis F, Tamburri E, Terranova M
. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. Micromachines (Basel). 2022; 13(5).
PMC: 9144100.
DOI: 10.3390/mi13050780.
View
13.
Nguyen T, Hu C, Sakthivel R, Nabilla S, Huang Y, Yu J
. Preparation of gamma poly-glutamic acid/hydroxyapatite/collagen composite as the 3D-printing scaffold for bone tissue engineering. Biomater Res. 2022; 26(1):21.
PMC: 9158383.
DOI: 10.1186/s40824-022-00265-7.
View
14.
Xu T, Shen W, Lin X, Xie Y
. Mechanical Properties of Additively Manufactured Thermoplastic Polyurethane (TPU) Material Affected by Various Processing Parameters. Polymers (Basel). 2020; 12(12).
PMC: 7767280.
DOI: 10.3390/polym12123010.
View
15.
Pappalardo D, Mathisen T, Finne-Wistrand A
. Biocompatibility of Resorbable Polymers: A Historical Perspective and Framework for the Future. Biomacromolecules. 2019; 20(4):1465-1477.
DOI: 10.1021/acs.biomac.9b00159.
View
16.
Lim J, You M, Li J, Li Z
. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Mater Sci Eng C Mater Biol Appl. 2017; 79:917-929.
DOI: 10.1016/j.msec.2017.05.132.
View
17.
Ahearne M
. Introduction to cell-hydrogel mechanosensing. Interface Focus. 2014; 4(2):20130038.
PMC: 3982445.
DOI: 10.1098/rsfs.2013.0038.
View
18.
Mi H, Jing X, Napiwocki B, Hagerty B, Chen G, Turng L
. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. J Mater Chem B. 2017; 5(22):4137-4151.
PMC: 5695921.
DOI: 10.1039/C7TB00419B.
View
19.
Pulingam T, Appaturi J, Parumasivam T, Ahmad A, Sudesh K
. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers (Basel). 2022; 14(11).
PMC: 9182786.
DOI: 10.3390/polym14112141.
View
20.
Keller B, Lohmann C, Kyeremateng S, Fricker G
. Synthesis and Characterization of Biodegradable Poly(butyl cyanoacrylate) for Drug Delivery Applications. Polymers (Basel). 2022; 14(5).
PMC: 8912508.
DOI: 10.3390/polym14050998.
View