6.
Carvalho G, Sabio R, Ribeiro T, Monteiro A, Pereira D, Lima Ribeiro S
. Highlights in Mesoporous Silica Nanoparticles as a Multifunctional Controlled Drug Delivery Nanoplatform for Infectious Diseases Treatment. Pharm Res. 2020; 37(10):191.
PMC: 7476752.
DOI: 10.1007/s11095-020-02917-6.
View
7.
Bharti C, Nagaich U, Pal A, Gulati N
. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig. 2015; 5(3):124-33.
PMC: 4522861.
DOI: 10.4103/2230-973X.160844.
View
8.
Sun J, Liu Y, Ge M, Zhou G, Sun W, Liu D
. A Distinct Endocytic Mechanism of Functionalized-Silica Nanoparticles in Breast Cancer Stem Cells. Sci Rep. 2017; 7(1):16236.
PMC: 5701218.
DOI: 10.1038/s41598-017-16591-z.
View
9.
Huang X, Li L, Liu T, Hao N, Liu H, Chen D
. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011; 5(7):5390-9.
DOI: 10.1021/nn200365a.
View
10.
Chen L, Liu J, Zhang Y, Zhang G, Kang Y, Chen A
. The toxicity of silica nanoparticles to the immune system. Nanomedicine (Lond). 2018; 13(15):1939-1962.
DOI: 10.2217/nnm-2018-0076.
View
11.
Guo C, Xia Y, Niu P, Jiang L, Duan J, Yu Y
. Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling. Int J Nanomedicine. 2015; 10:1463-77.
PMC: 4345992.
DOI: 10.2147/IJN.S76114.
View
12.
Ghosh S, Deguchi S, Mukai S, Tsujii K
. Supercritical ethanol--a fascinating dispersion medium for silica nanoparticles. J Phys Chem B. 2007; 111(28):8169-74.
DOI: 10.1021/jp071999g.
View
13.
Uda M, Gopinath S, Hashim U, Halim N, Parmin N, Uda M
. Production and characterization of silica nanoparticles from fly ash: conversion of agro-waste into resource. Prep Biochem Biotechnol. 2020; 51(1):86-95.
DOI: 10.1080/10826068.2020.1793174.
View
14.
Yang K, Zhang C, Wang W, Wang P, Zhou J, Liang X
. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol Med. 2014; 11(1):34-43.
PMC: 3969802.
DOI: 10.7497/j.issn.2095-3941.2014.01.003.
View
15.
Graf C, Gao Q, Schutz I, Njiki Noufele C, Ruan W, Posselt U
. Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir. 2012; 28(20):7598-613.
DOI: 10.1021/la204913t.
View
16.
Xiao D, Qi H, Teng Y, Pierre D, Kutoka P, Liu D
. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. Nanoscale Res Lett. 2021; 16(1):167.
PMC: 8626755.
DOI: 10.1186/s11671-021-03613-z.
View
17.
Moghimipour E, Salimi A, Eftekhari S
. Design and characterization of microemulsion systems for naproxen. Adv Pharm Bull. 2013; 3(1):63-71.
PMC: 3846048.
DOI: 10.5681/apb.2013.011.
View
18.
Dai Y, Yang D, Yu D, Xie S, Wang B, Bu J
. Engineering of monodisperse core-shell up-conversion dendritic mesoporous silica nanocomposites with a tunable pore size. Nanoscale. 2020; 12(8):5075-5083.
DOI: 10.1039/c9nr10813k.
View
19.
Toum Terrones Y, Torresan M, Mirenda M, Rodriguez H, Wolosiuk A
. Photoactive Red Fluorescent SiO Nanoparticles Based on Controlled Methylene Blue Aggregation in Reverse Microemulsions. Langmuir. 2022; 38(22):6786-6797.
DOI: 10.1021/acs.langmuir.1c02458.
View
20.
Mahendran L, Ravichandran A, Ballamurugan A
. Organic and Inorganic Template-Assisted Synthesis of Silica Nanotubes and Evaluation of Their Properties. Appl Biochem Biotechnol. 2021; 194(1):167-175.
DOI: 10.1007/s12010-021-03740-4.
View