6.
Conlon S, Khuu C, Trasvina-Arenas C, Xia T, Hamm M, Raetz A
. Cellular Repair of Synthetic Analogs of Oxidative DNA Damage Reveals a Key Structure-Activity Relationship of the Cancer-Associated MUTYH DNA Repair Glycosylase. ACS Cent Sci. 2024; 10(2):291-301.
PMC: 10906249.
DOI: 10.1021/acscentsci.3c00784.
View
7.
Demir M, Russelburg L, Lin W, Trasvina-Arenas C, Huang B, Yuen P
. Structural snapshots of base excision by the cancer-associated variant MutY N146S reveal a retaining mechanism. Nucleic Acids Res. 2023; 51(3):1034-1049.
PMC: 9943663.
DOI: 10.1093/nar/gkac1246.
View
8.
Gu Y, Parker A, Wilson T, Bai H, Chang D, Lu A
. Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J Biol Chem. 2002; 277(13):11135-42.
DOI: 10.1074/jbc.M108618200.
View
9.
McDonnell K, Chemler J, Bartels P, OBrien E, Marvin M, Ortega J
. A human MUTYH variant linking colonic polyposis to redox degradation of the [4Fe4S] cluster. Nat Chem. 2018; 10(8):873-880.
PMC: 6060025.
DOI: 10.1038/s41557-018-0068-x.
View
10.
Tse E, Zwang T, Barton J
. The Oxidation State of [4Fe4S] Clusters Modulates the DNA-Binding Affinity of DNA Repair Proteins. J Am Chem Soc. 2017; 139(36):12784-12792.
PMC: 5929122.
DOI: 10.1021/jacs.7b07230.
View
11.
Shao J, Kuiper B, Thunnissen A, Cool R, Zhou L, Huang C
. The Role of Tryptophan in π Interactions in Proteins: An Experimental Approach. J Am Chem Soc. 2022; 144(30):13815-13822.
PMC: 9354243.
DOI: 10.1021/jacs.2c04986.
View
12.
Nunez N, Majumdar C, Lay K, David S
. Fe-S Clusters and MutY Base Excision Repair Glycosylases: Purification, Kinetics, and DNA Affinity Measurements. Methods Enzymol. 2018; 599:21-68.
PMC: 6267926.
DOI: 10.1016/bs.mie.2017.11.035.
View
13.
Porello S, Leyes A, David S
. Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates. Biochemistry. 1998; 37(42):14756-64.
DOI: 10.1021/bi981594+.
View
14.
Lee S, Verdine G
. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase. Proc Natl Acad Sci U S A. 2009; 106(44):18497-502.
PMC: 2773975.
DOI: 10.1073/pnas.0902908106.
View
15.
Mol C, Arvai A, Begley T, Cunningham R, Tainer J
. Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases. J Mol Biol. 2002; 315(3):373-84.
DOI: 10.1006/jmbi.2001.5264.
View
16.
Russelburg L, OShea Murray V, Demir M, Knutsen K, Sehgal S, Cao S
. Structural Basis for Finding OG Lesions and Avoiding Undamaged G by the DNA Glycosylase MutY. ACS Chem Biol. 2019; 15(1):93-102.
PMC: 7069122.
DOI: 10.1021/acschembio.9b00639.
View
17.
Slabinski L, Jaroszewski L, Rychlewski L, Wilson I, Lesley S, Godzik A
. XtalPred: a web server for prediction of protein crystallizability. Bioinformatics. 2007; 23(24):3403-5.
DOI: 10.1093/bioinformatics/btm477.
View
18.
Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M
. ColabFold: making protein folding accessible to all. Nat Methods. 2022; 19(6):679-682.
PMC: 9184281.
DOI: 10.1038/s41592-022-01488-1.
View
19.
Kellie J, Wilson K, Wetmore S
. Standard role for a conserved aspartate or more direct involvement in deglycosylation? An ONIOM and MD investigation of adenine-DNA glycosylase. Biochemistry. 2013; 52(48):8753-65.
DOI: 10.1021/bi401310w.
View
20.
Hedglin M, OBrien P
. Hopping enables a DNA repair glycosylase to search both strands and bypass a bound protein. ACS Chem Biol. 2010; 5(4):427-36.
PMC: 2861864.
DOI: 10.1021/cb1000185.
View