6.
Luke A, Cooper R, Prewitt T, Adeyemo A, Forrester T
. Nutritional consequences of the African diaspora. Annu Rev Nutr. 2001; 21:47-71.
DOI: 10.1146/annurev.nutr.21.1.47.
View
7.
Black J, Macinko J
. Neighborhoods and obesity. Nutr Rev. 2008; 66(1):2-20.
DOI: 10.1111/j.1753-4887.2007.00001.x.
View
8.
Sun Y, Wang S, Sun X
. Estimating neighbourhood-level prevalence of adult obesity by socio-economic, behavioural and built environment factors in New York City. Public Health. 2020; 186:57-62.
DOI: 10.1016/j.puhe.2020.05.003.
View
9.
Jaul E, Barron J
. Age-Related Diseases and Clinical and Public Health Implications for the 85 Years Old and Over Population. Front Public Health. 2018; 5:335.
PMC: 5732407.
DOI: 10.3389/fpubh.2017.00335.
View
10.
Safaei M, A Sundararajan E, Driss M, Boulila W, Shapii A
. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput Biol Med. 2021; 136:104754.
DOI: 10.1016/j.compbiomed.2021.104754.
View
11.
Tatem A
. WorldPop, open data for spatial demography. Sci Data. 2017; 4:170004.
PMC: 5283060.
DOI: 10.1038/sdata.2017.4.
View
12.
Phillips S, Dudik M, Elith J, Graham C, Lehmann A, Leathwick J
. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl. 2009; 19(1):181-97.
DOI: 10.1890/07-2153.1.
View
13.
Ribeiro A, Pires A, Carvalho M, Pina M
. Distance to parks and non-residential destinations influences physical activity of older people, but crime doesn't: a cross-sectional study in a southern European city. BMC Public Health. 2015; 15:593.
PMC: 4483219.
DOI: 10.1186/s12889-015-1879-y.
View
14.
Htet A, Bjertness M, Sherpa L, Kjollesdal M, Oo W, Meyer H
. Urban-rural differences in the prevalence of non-communicable diseases risk factors among 25-74 years old citizens in Yangon Region, Myanmar: a cross sectional study. BMC Public Health. 2016; 16(1):1225.
PMC: 5139102.
DOI: 10.1186/s12889-016-3882-3.
View
15.
Jia P, Xue H, Yin L, Stein A, Wang M, Wang Y
. Spatial Technologies in Obesity Research: Current Applications and Future Promise. Trends Endocrinol Metab. 2019; 30(3):211-223.
DOI: 10.1016/j.tem.2018.12.003.
View
16.
James P, Kioumourtzoglou M, Hart J, Banay R, Kloog I, Laden F
. Interrelationships Between Walkability, Air Pollution, Greenness, and Body Mass Index. Epidemiology. 2017; 28(6):780-788.
PMC: 5617802.
DOI: 10.1097/EDE.0000000000000724.
View
17.
Araujo M, New M
. Ensemble forecasting of species distributions. Trends Ecol Evol. 2006; 22(1):42-7.
DOI: 10.1016/j.tree.2006.09.010.
View
18.
Vignali S, Barras A, Arlettaz R, Braunisch V
. : An R package to tune and evaluate species distribution models. Ecol Evol. 2020; 10(20):11488-11506.
PMC: 7593178.
DOI: 10.1002/ece3.6786.
View
19.
DeGregory K, Kuiper P, DeSilvio T, Pleuss J, Miller R, Roginski J
. A review of machine learning in obesity. Obes Rev. 2018; 19(5):668-685.
PMC: 8176949.
DOI: 10.1111/obr.12667.
View
20.
Dahly D, Gordon-Larsen P, Emch M, Borja J, Adair L
. The spatial distribution of overweight and obesity among a birth cohort of young adult Filipinos (Cebu Philippines, 2005): an application of the Kulldorff spatial scan statistic. Nutr Diabetes. 2013; 3:e80.
PMC: 3730219.
DOI: 10.1038/nutd.2013.21.
View