6.
Grigoryan B, Paulsen S, Corbett D, Sazer D, Fortin C, Zaita A
. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 2019; 364(6439):458-464.
PMC: 7769170.
DOI: 10.1126/science.aav9750.
View
7.
Xuan X, Yoon H, Park J
. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens Bioelectron. 2018; 109:75-82.
DOI: 10.1016/j.bios.2018.02.054.
View
8.
Du J, Ma Q, Wang B, Sun L, Liu L
. Hydrogel fibers for wearable sensors and soft actuators. iScience. 2023; 26(6):106796.
PMC: 10197150.
DOI: 10.1016/j.isci.2023.106796.
View
9.
Wang Z, Wu W
. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed Engl. 2012; 51(47):11700-21.
DOI: 10.1002/anie.201201656.
View
10.
Liu W, Wang Z, Wang G, Liu G, Chen J, Pu X
. Integrated charge excitation triboelectric nanogenerator. Nat Commun. 2019; 10(1):1426.
PMC: 6440990.
DOI: 10.1038/s41467-019-09464-8.
View
11.
Luo J, Tang W, Fan F, Liu C, Pang Y, Cao G
. Transparent and Flexible Self-Charging Power Film and Its Application in a Sliding Unlock System in Touchpad Technology. ACS Nano. 2016; 10(8):8078-86.
DOI: 10.1021/acsnano.6b04201.
View
12.
Xu S, Rwei A, Vwalika B, Chisembele M, Stringer J, Ginsburg A
. Wireless skin sensors for physiological monitoring of infants in low-income and middle-income countries. Lancet Digit Health. 2021; 3(4):e266-e273.
DOI: 10.1016/S2589-7500(21)00001-7.
View
13.
Wang H, Ding Q, Luo Y, Wu Z, Yu J, Chen H
. High-Performance Hydrogel Sensors Enabled Multimodal and Accurate Human-Machine Interaction System for Active Rehabilitation. Adv Mater. 2023; 36(11):e2309868.
DOI: 10.1002/adma.202309868.
View
14.
Yu R, Li M, Li Z, Pan G, Liang Y, Guo B
. Supramolecular Thermo-Contracting Adhesive Hydrogel with Self-Removability Simultaneously Enhancing Noninvasive Wound Closure and MRSA-Infected Wound Healing. Adv Healthc Mater. 2022; 11(13):e2102749.
DOI: 10.1002/adhm.202102749.
View
15.
Di X, Hou J, Yang M, Wu G, Sun P
. A bio-inspired, ultra-tough, high-sensitivity, and anti-swelling conductive hydrogel strain sensor for motion detection and information transmission. Mater Horiz. 2022; 9(12):3057-3069.
DOI: 10.1039/d2mh00456a.
View
16.
Khan Y, Ostfeld A, Lochner C, Pierre A, Arias A
. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv Mater. 2016; 28(22):4373-95.
DOI: 10.1002/adma.201504366.
View
17.
Madore B, Preiswerk F, Bredfeldt J, Zong S, Cheng C
. Ultrasound-based sensors to monitor physiological motion. Med Phys. 2021; 48(7):3614-3622.
PMC: 8319119.
DOI: 10.1002/mp.14949.
View
18.
Zhang P, Zhao C, Zhao T, Liu M, Jiang L
. Recent Advances in Bioinspired Gel Surfaces with Superwettability and Special Adhesion. Adv Sci (Weinh). 2019; 6(18):1900996.
PMC: 6760469.
DOI: 10.1002/advs.201900996.
View
19.
Wang C, Qu X, Zheng Q, Liu Y, Tan P, Shi B
. Stretchable, Self-Healing, and Skin-Mounted Active Sensor for Multipoint Muscle Function Assessment. ACS Nano. 2021; 15(6):10130-10140.
DOI: 10.1021/acsnano.1c02010.
View
20.
Parida K, Thangavel G, Cai G, Zhou X, Park S, Xiong J
. Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat Commun. 2019; 10(1):2158.
PMC: 6517406.
DOI: 10.1038/s41467-019-10061-y.
View