6.
Suo T, Liu X, Feng J, Guo M, Hu W, Guo D
. ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg Microbes Infect. 2020; 9(1):1259-1268.
PMC: 7448897.
DOI: 10.1080/22221751.2020.1772678.
View
7.
Lazuka A, Arnal C, Soyeux E, Sampson M, Lepeuple A, Deleuze Y
. COVID-19 wastewater based epidemiology: long-term monitoring of 10 WWTP in France reveals the importance of the sampling context. Water Sci Technol. 2021; 84(8):1997-2013.
DOI: 10.2166/wst.2021.418.
View
8.
Lu X, Wang L, Sakthivel S, Whitaker B, Murray J, Kamili S
. US CDC Real-Time Reverse Transcription PCR Panel for Detection of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis. 2020; 26(8).
PMC: 7392423.
DOI: 10.3201/eid2608.201246.
View
9.
Ash K, Li Y, Alamilla I, Joyner D, Williams D, McKay P
. SARS-CoV-2 raw wastewater surveillance from student residences on an urban university campus. Front Microbiol. 2023; 14:1101205.
PMC: 9948028.
DOI: 10.3389/fmicb.2023.1101205.
View
10.
Kaya D, Niemeier D, Ahmed W, Kjellerup B
. Evaluation of multiple analytical methods for SARS-CoV-2 surveillance in wastewater samples. Sci Total Environ. 2021; 808:152033.
PMC: 8648376.
DOI: 10.1016/j.scitotenv.2021.152033.
View
11.
Kmush B, Monk D, Green H, Sachs D, Zeng T, Larsen D
. Comparability of 24-hour composite and grab samples for detection of SARS-2-CoV RNA in wastewater. FEMS Microbes. 2023; 3:xtac017.
PMC: 10117866.
DOI: 10.1093/femsmc/xtac017.
View
12.
Morales Medina W, Eramo A, Tu M, Fahrenfeld N
. Sewer biofilm microbiome and antibiotic resistance genes as function of pipe material, source of microbes, and disinfection: field and laboratory studies. Environ Sci (Camb). 2020; 6(8):2122-2137.
PMC: 7537146.
DOI: 10.1039/d0ew00265h.
View
13.
Rafiee M, Isazadeh S, Mohseni-Bandpei A, Mohebbi S, Jahangiri-Rad M, Eslami A
. Moore swab performs equal to composite and outperforms grab sampling for SARS-CoV-2 monitoring in wastewater. Sci Total Environ. 2021; 790:148205.
PMC: 8170911.
DOI: 10.1016/j.scitotenv.2021.148205.
View
14.
Li Y, Miyani B, Zhao L, Spooner M, Gentry Z, Zou Y
. Surveillance of SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-County area, United States: Assessing per capita SARS-CoV-2 estimations and COVID-19 incidence. Sci Total Environ. 2022; 851(Pt 2):158350.
PMC: 9419442.
DOI: 10.1016/j.scitotenv.2022.158350.
View
15.
Cashdollar J, Wymer L
. Methods for primary concentration of viruses from water samples: a review and meta-analysis of recent studies. J Appl Microbiol. 2013; 115(1):1-11.
DOI: 10.1111/jam.12143.
View
16.
Endo N, Nihei Y, Fujita T, Yasojima M, Daigo F, Takemori H
. Explaining the impact of mutations on quantification of SARS-CoV-2 in wastewater. Sci Rep. 2024; 14(1):12482.
PMC: 11139995.
DOI: 10.1038/s41598-024-62659-y.
View
17.
Perez-Zabaleta M, Archer A, Khatami K, Jafferali M, Nandy P, Atasoy M
. Long-term SARS-CoV-2 surveillance in the wastewater of Stockholm: What lessons can be learned from the Swedish perspective?. Sci Total Environ. 2022; 858(Pt 3):160023.
PMC: 9640212.
DOI: 10.1016/j.scitotenv.2022.160023.
View
18.
Shanks O, Newton R, Kelty C, Huse S, Sogin M, McLellan S
. Comparison of the microbial community structures of untreated wastewaters from different geographic locales. Appl Environ Microbiol. 2013; 79(9):2906-13.
PMC: 3623150.
DOI: 10.1128/AEM.03448-12.
View
19.
Zhang T, Breitbart M, Lee W, Run J, Wei C, Soh S
. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol. 2005; 4(1):e3.
PMC: 1310650.
DOI: 10.1371/journal.pbio.0040003.
View
20.
Sun C, Liu L, Vasudevan H, Chang K, Abate A
. Accurate Bulk Quantitation of Droplet Digital Polymerase Chain Reaction. Anal Chem. 2021; 93(29):9974-9979.
PMC: 8829825.
DOI: 10.1021/acs.analchem.1c00877.
View