6.
Xu N, Zhang S, Cole R, McKinney S, Guo F, Haas J
. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J Cell Biol. 2012; 198(5):895-911.
PMC: 3432760.
DOI: 10.1083/jcb.201201139.
View
7.
Kajikawa M, Sawaragi Y, Shinkawa H, Yamano T, Ando A, Kato M
. Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency. Plant Physiol. 2015; 168(2):752-64.
PMC: 4453788.
DOI: 10.1104/pp.15.00319.
View
8.
Moellering E, Benning C
. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell. 2009; 9(1):97-106.
PMC: 2805299.
DOI: 10.1128/EC.00203-09.
View
9.
Jang S, Kong F, Lee J, Choi B, Wang P, Gao P
. CrABCA2 Facilitates Triacylglycerol Accumulation in under Nitrogen Starvation. Mol Cells. 2020; 43(1):48-57.
PMC: 6999713.
DOI: 10.14348/molcells.2019.0262.
View
10.
Murakami H, Nobusawa T, Hori K, Shimojima M, Ohta H
. Betaine Lipid Is Crucial for Adapting to Low Temperature and Phosphate Deficiency in . Plant Physiol. 2018; 177(1):181-193.
PMC: 5933114.
DOI: 10.1104/pp.17.01573.
View
11.
Wang X, Wei H, Mao X, Liu J
. Proteomics Analysis of Lipid Droplets from the Oleaginous Alga Chromochloris zofingiensis Reveals Novel Proteins for Lipid Metabolism. Genomics Proteomics Bioinformatics. 2019; 17(3):260-272.
PMC: 6818385.
DOI: 10.1016/j.gpb.2019.01.003.
View
12.
Young D, Shachar-Hill Y
. Large fluxes of fatty acids from membranes to triacylglycerol and back during N-deprivation and recovery in Chlamydomonas. Plant Physiol. 2021; 185(3):796-814.
PMC: 8133548.
DOI: 10.1093/plphys/kiaa071.
View
13.
Yamaoka Y, Shin S, Choi B, Kim H, Jang S, Kajikawa M
. The bZIP1 Transcription Factor Regulates Lipid Remodeling and Contributes to ER Stress Management in . Plant Cell. 2019; 31(5):1127-1140.
PMC: 6533020.
DOI: 10.1105/tpc.18.00723.
View
14.
Chung J, Wu X, Lambert T, Lai Z, Walther T, Farese Jr R
. LDAF1 and Seipin Form a Lipid Droplet Assembly Complex. Dev Cell. 2019; 51(5):551-563.e7.
PMC: 7235935.
DOI: 10.1016/j.devcel.2019.10.006.
View
15.
Riekhof W, Sears B, Benning C
. Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Eukaryot Cell. 2005; 4(2):242-52.
PMC: 549322.
DOI: 10.1128/EC.4.2.242-252.2005.
View
16.
Chorlay A, Santinho A, Thiam A
. Making Droplet-Embedded Vesicles to Model Cellular Lipid Droplets. STAR Protoc. 2020; 1(3):100116.
PMC: 7757013.
DOI: 10.1016/j.xpro.2020.100116.
View
17.
Merchant S, Kropat J, Liu B, Shaw J, Warakanont J
. TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol. 2012; 23(3):352-63.
DOI: 10.1016/j.copbio.2011.12.001.
View
18.
Chorlay A, Monticelli L, Ferreira J, Ben Mbarek K, Ajjaji D, Wang S
. Membrane Asymmetry Imposes Directionality on Lipid Droplet Emergence from the ER. Dev Cell. 2019; 50(1):25-42.e7.
DOI: 10.1016/j.devcel.2019.05.003.
View
19.
Thiam A, Farese Jr R, Walther T
. The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol. 2013; 14(12):775-86.
PMC: 4526153.
DOI: 10.1038/nrm3699.
View
20.
Farese Jr R, Walther T
. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell. 2009; 139(5):855-60.
PMC: 3097139.
DOI: 10.1016/j.cell.2009.11.005.
View