6.
Li J, Henriksson G, Gellerstedt G
. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol. 2006; 98(16):3061-8.
DOI: 10.1016/j.biortech.2006.10.018.
View
7.
Zhang Z, Wang L, Zheng B, Zhang Y, Pan L
. In vitro digestive properties of Dictyophora indusiata polysaccharide by steam explosion pretreatment methods. Int J Biol Macromol. 2024; 265(Pt 2):131116.
DOI: 10.1016/j.ijbiomac.2024.131116.
View
8.
Jiang C, Wang R, Liu X, Wang J, Zheng X, Zuo F
. Effect of Particle Size on Physicochemical Properties and Hypoglycemic Ability of Insoluble Dietary Fiber From Corn Bran. Front Nutr. 2022; 9:951821.
PMC: 9335050.
DOI: 10.3389/fnut.2022.951821.
View
9.
Zheng Y, Wang X, Tian H, Li Y, Shi P, Guo W
. Effect of four modification methods on adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Res Int. 2021; 147:110565.
DOI: 10.1016/j.foodres.2021.110565.
View
10.
Wang C, Lin M, Yang Q, Fu C, Guo Z
. The Principle of Steam Explosion Technology and Its Application in Food Processing By-Products. Foods. 2023; 12(17).
PMC: 10486971.
DOI: 10.3390/foods12173307.
View
11.
Xi H, Wang A, Qin W, Nie M, Chen Z, He Y
. The structural and functional properties of dietary fibre extracts obtained from highland barley bran through different steam explosion-assisted treatments. Food Chem. 2022; 406:135025.
DOI: 10.1016/j.foodchem.2022.135025.
View
12.
Huang Y, Ma Y, Tsai Y, Chang S
. In vitro hypoglycemic, cholesterol-lowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion. Int J Biol Macromol. 2018; 124:796-801.
DOI: 10.1016/j.ijbiomac.2018.11.249.
View
13.
Liu Y, Zhang H, Yi C, Quan K, Lin B
. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chem. 2020; 342:128352.
DOI: 10.1016/j.foodchem.2020.128352.
View
14.
Xu Y, Cui Y, Wang X, Yue F, Shan Y, Liu B
. Purification, characterization and bioactivity of exopolysaccharides produced by Lactobacillus plantarum KX041. Int J Biol Macromol. 2019; 128:480-492.
DOI: 10.1016/j.ijbiomac.2019.01.117.
View
15.
Wei C, Ge Y, Liu D, Zhao S, Wei M, Jiliu J
. Effects of High-Temperature, High-Pressure, and Ultrasonic Treatment on the Physicochemical Properties and Structure of Soluble Dietary Fibers of Millet Bran. Front Nutr. 2022; 8:820715.
PMC: 8805509.
DOI: 10.3389/fnut.2021.820715.
View
16.
Yan K, Liu J, Yan W, Wang Q, Huo Y, Feng S
. Effects of Alkaline Hydrogen Peroxide and Cellulase Modifications on the Physicochemical and Functional Properties of Dietary Fiber. Molecules. 2023; 28(20).
PMC: 10608965.
DOI: 10.3390/molecules28207164.
View
17.
Shen M, Weihao W, Cao L
. Soluble dietary fibers from black soybean hulls: Physical and enzymatic modification, structure, physical properties, and cholesterol binding capacity. J Food Sci. 2020; 85(6):1668-1674.
DOI: 10.1111/1750-3841.15133.
View
18.
Wu D, Zhao Y, Yuan Q, Wang S, Gan R, Hu Y
. Influence of ultrasound assisted metal-free Fenton reaction on the structural characteristic and immunostimulatory activity of a β-D-glucan isolated from Dictyophora indusiata. Int J Biol Macromol. 2022; 220:97-108.
DOI: 10.1016/j.ijbiomac.2022.08.058.
View
19.
Hua Y, Yang B, Tang J, Ma Z, Gao Q, Zhao M
. Structural analysis of water-soluble polysaccharides in the fruiting body of Dictyophora indusiata and their in vivo antioxidant activities. Carbohydr Polym. 2021; 87(1):343-347.
DOI: 10.1016/j.carbpol.2011.07.056.
View
20.
Yang C, Si J, Chen Y, Xie J, Tian S, Cheng Y
. Physicochemical structure and functional properties of soluble dietary fibers obtained by different modification methods from Mesona chinensis Benth. residue. Food Res Int. 2022; 157:111489.
DOI: 10.1016/j.foodres.2022.111489.
View