6.
Drontschenko V, Ochsenfeld C
. Low-Scaling, Efficient and Memory Optimized Computation of Nuclear Magnetic Resonance Shieldings within the Random Phase Approximation Using Cholesky-Decomposed Densities and an Attenuated Coulomb Metric. J Phys Chem A. 2024; 128(37):7950-7965.
PMC: 11421095.
DOI: 10.1021/acs.jpca.4c02773.
View
7.
Laqua H, Thompson T, Kussmann J, Ochsenfeld C
. Highly Efficient, Linear-Scaling Seminumerical Exact-Exchange Method for Graphic Processing Units. J Chem Theory Comput. 2020; 16(3):1456-1468.
DOI: 10.1021/acs.jctc.9b00860.
View
8.
Laqua H, Kussmann J, Ochsenfeld C
. An improved molecular partitioning scheme for numerical quadratures in density functional theory. J Chem Phys. 2018; 149(20):204111.
DOI: 10.1063/1.5049435.
View
9.
Petersilka , Gossmann , Gross
. Excitation energies from time-dependent density-functional theory. Phys Rev Lett. 1996; 76(8):1212-1215.
DOI: 10.1103/PhysRevLett.76.1212.
View
10.
Furche F
. Developing the random phase approximation into a practical post-Kohn-Sham correlation model. J Chem Phys. 2008; 129(11):114105.
DOI: 10.1063/1.2977789.
View
11.
Lemke Y, Ochsenfeld C
. Highly accurate σ- and τ-functionals for beyond-RPA methods with approximate exchange kernels. J Chem Phys. 2023; 159(19).
DOI: 10.1063/5.0173042.
View
12.
Erhard J, Bleiziffer P, Gorling A
. Power Series Approximation for the Correlation Kernel Leading to Kohn-Sham Methods Combining Accuracy, Computational Efficiency, and General Applicability. Phys Rev Lett. 2016; 117(14):143002.
DOI: 10.1103/PhysRevLett.117.143002.
View
13.
Hellweg A, Rappoport D
. Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations. Phys Chem Chem Phys. 2014; 17(2):1010-7.
DOI: 10.1039/c4cp04286g.
View
14.
Eshuis H, Furche F
. Basis set convergence of molecular correlation energy differences within the random phase approximation. J Chem Phys. 2012; 136(8):084105.
DOI: 10.1063/1.3687005.
View
15.
Karton A, Sylvetsky N, Martin J
. W4-17: A diverse and high-confidence dataset of atomization energies for benchmarking high-level electronic structure methods. J Comput Chem. 2017; 38(24):2063-2075.
DOI: 10.1002/jcc.24854.
View
16.
Perdew , Chevary , Vosko , Jackson , Pederson , Singh
. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B Condens Matter. 1992; 46(11):6671-6687.
DOI: 10.1103/physrevb.46.6671.
View
17.
Fauser S, Forster A, Redeker L, Neiss C, Erhard J, Trushin E
. Basis Set Requirements of σ-Functionals for Gaussian- and Slater-Type Basis Functions and Comparison with Range-Separated Hybrid and Double Hybrid Functionals. J Chem Theory Comput. 2024; 20(6):2404-2422.
DOI: 10.1021/acs.jctc.3c01132.
View
18.
Fauser S, Trushin E, Neiss C, Gorling A
. Chemical accuracy with σ-functionals for the Kohn-Sham correlation energy optimized for different input orbitals and eigenvalues. J Chem Phys. 2021; 155(13):134111.
DOI: 10.1063/5.0059641.
View
19.
Drontschenko V, Graf D, Laqua H, Ochsenfeld C
. Efficient Method for the Computation of Frozen-Core Nuclear Gradients within the Random Phase Approximation. J Chem Theory Comput. 2022; 18(12):7359-7372.
DOI: 10.1021/acs.jctc.2c00774.
View
20.
Mussard B, Rocca D, Jansen G, Angyan J
. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects. J Chem Theory Comput. 2016; 12(5):2191-202.
DOI: 10.1021/acs.jctc.5b01129.
View