6.
Boonekamp F, Dashko S, van den Broek M, Gehrmann T, Daran J, Daran-Lapujade P
. The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the Genus. Front Genet. 2018; 9:504.
PMC: 6250768.
DOI: 10.3389/fgene.2018.00504.
View
7.
Basile A, De Pascale F, Bianca F, Rossi A, Frizzarin M, De Bernardini N
. Large-scale sequencing and comparative analysis of oenological Saccharomyces cerevisiae strains supported by nanopore refinement of key genomes. Food Microbiol. 2021; 97:103753.
DOI: 10.1016/j.fm.2021.103753.
View
8.
Duan S, Han P, Wang Q, Liu W, Shi J, Li K
. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat Commun. 2018; 9(1):2690.
PMC: 6043522.
DOI: 10.1038/s41467-018-05106-7.
View
9.
Barbosa R, Almeida P, Safar S, Santos R, Morais P, Nielly-Thibault L
. Evidence of Natural Hybridization in Brazilian Wild Lineages of Saccharomyces cerevisiae. Genome Biol Evol. 2016; 8(2):317-29.
PMC: 4779607.
DOI: 10.1093/gbe/evv263.
View
10.
Ramazzotti M, Stefanini I, Di Paola M, De Filippo C, Rizzetto L, Berna L
. Population genomics reveals evolution and variation of Saccharomyces cerevisiae in the human and insects gut. Environ Microbiol. 2018; 21(1):50-71.
DOI: 10.1111/1462-2920.14422.
View
11.
Salazar A, Gorter de Vries A, van den Broek M, Brouwers N, de la Torre Cortes P, Kuijpers N
. Chromosome level assembly and comparative genome analysis confirm lager-brewing yeasts originated from a single hybridization. BMC Genomics. 2019; 20(1):916.
PMC: 6889557.
DOI: 10.1186/s12864-019-6263-3.
View
12.
Chen J, Basting P, Han S, Garfinkel D, Bergman C
. Reproducible evaluation of transposable element detectors with McClintock 2 guides accurate inference of Ty insertion patterns in yeast. Mob DNA. 2023; 14(1):8.
PMC: 10347736.
DOI: 10.1186/s13100-023-00296-4.
View
13.
Steinbiss S, Willhoeft U, Gremme G, Kurtz S
. Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res. 2009; 37(21):7002-13.
PMC: 2790888.
DOI: 10.1093/nar/gkp759.
View
14.
Xia W, Nielly-Thibault L, Charron G, Landry C, Kasimer D, Anderson J
. Population genomics reveals structure at the individual, host-tree scale and persistence of genotypic variants of the undomesticated yeast Saccharomyces paradoxus in a natural woodland. Mol Ecol. 2016; 26(4):995-1007.
DOI: 10.1111/mec.13954.
View
15.
Maclean C, Metzger B, Yang J, Ho W, Moyers B, Zhang J
. Deciphering the Genic Basis of Yeast Fitness Variation by Simultaneous Forward and Reverse Genetics. Mol Biol Evol. 2017; 34(10):2486-2502.
DOI: 10.1093/molbev/msx151.
View
16.
Almeida P, Barbosa R, Zalar P, Imanishi Y, Shimizu K, Turchetti B
. A population genomics insight into the Mediterranean origins of wine yeast domestication. Mol Ecol. 2015; 24(21):5412-27.
DOI: 10.1111/mec.13341.
View
17.
Zheng X, Levine D, Shen J, Gogarten S, Laurie C, Weir B
. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012; 28(24):3326-8.
PMC: 3519454.
DOI: 10.1093/bioinformatics/bts606.
View
18.
Leducq J, Charron G, Samani P, Dube A, Sylvester K, James B
. Local climatic adaptation in a widespread microorganism. Proc Biol Sci. 2014; 281(1777):20132472.
PMC: 3896012.
DOI: 10.1098/rspb.2013.2472.
View
19.
Dotto B, Carvalho E, Silva A, Duarte Silva L, Pinto P, Ortiz M
. HTT-DB: horizontally transferred transposable elements database. Bioinformatics. 2015; 31(17):2915-7.
DOI: 10.1093/bioinformatics/btv281.
View
20.
Katoh K, Standley D
. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30(4):772-80.
PMC: 3603318.
DOI: 10.1093/molbev/mst010.
View