» Articles » PMID: 3978199

Phospholipid Surface Bilayers at the Air-water Interface. II. Water Permeability of Dimyristoylphosphatidylcholine Surface Bilayers

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1985 Feb 1
PMID 3978199
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Dispersions of dimyristoylphosphatidylcholine (DMPC) in water have been reported to form a structure at 29 degrees C at the equilibrium air/water surface with a molecular density equal to that of a typical bilayer. In this study, the water permeability of this structure has been evaluated by measuring the rate of water evaporation from DMPC dispersions in water in the temperature range where the surface film density exceeds that of a monolayer. Evaporation rates for the lipid dispersions did not deviate from those for lipid-free systems throughout the entire temperature range examined (20-35 degrees C) except at 29 degrees C, where a barrier to evaporation was detected. This strengthens the view that the structure that forms at this temperature has the properties of a typical bilayer.

Citing Articles

Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films.

Sledge S, Khimji H, Borchman D, Oliver A, Michael H, Dennis E Ocul Surf. 2016; 14(4):447-459.

PMID: 27395776 PMC: 5065757. DOI: 10.1016/j.jtos.2016.06.002.


Three-dimensional macromolecular organization of cryofixed Myxococcus xanthus biofilms as revealed by electron microscopic tomography.

Palsdottir H, Remis J, Schaudinn C, OToole E, Lux R, Shi W J Bacteriol. 2009; 191(7):2077-82.

PMID: 19168614 PMC: 2655519. DOI: 10.1128/JB.01333-08.


Critical temperature for unilamellar vesicle formation in dimyristoylphosphatidylcholine dispersions from specific heat measurements.

GERSHFELD N, Mudd C, Tajima K, Berger R Biophys J. 1993; 65(3):1174-9.

PMID: 8241397 PMC: 1225836. DOI: 10.1016/S0006-3495(93)81157-3.


Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.

Lehtonen J, Kinnunen P Biophys J. 1995; 68(2):525-35.

PMID: 7696506 PMC: 1281717. DOI: 10.1016/S0006-3495(95)80214-6.


Phospholipid surface bilayers at the air-water interface. I. Thermodynamic properties.

Tajima K, GERSHFELD N Biophys J. 1985; 47(2 Pt 1):203-9.

PMID: 3838485 PMC: 1435155. DOI: 10.1016/s0006-3495(85)83892-3.


References
1.
Huang C, Thompson T . Properties of lipid bilayer membranes separating two aqueous phases: water permeability. J Mol Biol. 1966; 15(2):539-54. DOI: 10.1016/s0022-2836(66)80126-2. View

2.
Phillips M, Chapman D . Monolayer characteristics of saturated 1,2,-diacyl phosphatidylcholines (lecithins) and phosphatidylethanolamines at the air-water interface. Biochim Biophys Acta. 1968; 163(3):301-13. DOI: 10.1016/0005-2736(68)90115-6. View

3.
Graham D, Lea E . The effect of surface charge on the water permeability of phospholipid bilayers. Biochim Biophys Acta. 1972; 274(2):286-93. DOI: 10.1016/0005-2736(72)90177-0. View

4.
Tajima K, GERSHFELD N . Phospholipid surface bilayers at the air-water interface. I. Thermodynamic properties. Biophys J. 1985; 47(2 Pt 1):203-9. PMC: 1435155. DOI: 10.1016/s0006-3495(85)83892-3. View

5.
GERSHFELD N, Tajima K . Spontaneous formation of lecithin bilayers at the air-water surface. Nature. 1979; 279(5715):708-9. DOI: 10.1038/279708a0. View